V. Myers, A. Fortin, and P. Simard, An automated method for change detection in areas of high clutter density, International Conference on Underwater Acoustic Measurements (UAM) Conference Proceedings, 2009.

M. Gendron, M. Lohrenz, and J. Dubberley, Automated Change Detection Using Synthetic Aperture Sonar Imagery, OCEANS 2009 MTS, 2009.

D. D. Sternlicht, J. K. Harbaugh, and M. A. Nelson, Experiments in Coherent Change Detection for Synthetic Aperture Sonar, OCEANS 2009 MTS, 2009.

S. A. Synnes, H. J. Callow, T. O. Saebø, and R. E. Hansen, Multipass coherence processing on synthetic aperture sonar data, Proceedings of European Conference on Underwater Acoustics, 2010.

D. D. Sternlicht and T. , Change Detection by Image Correlation for Synthetic Aperture Sonar, Proceedings of Synthetic Aperture Sonar and Radar 2010, 2010.

T. P. Lyons and D. C. Brown, Temporal Variability of Seafloor Roughness and its Impact on Coherent Change Detection, Proceedings of Synthetic Aperture Sonar and Radar 2010, 2010.

T. O. Saebø, R. E. Hansen, H. J. Callow, and S. A. Synnes, Coregistration of synthetic aperture sonar images from repeated passes, Proceedings of Underwater Acoustic Measurements 2011, 2011.

E. J. Rignot and J. J. Van-zyl, Change detection techniques for ERS-1 SAR data, IEEE Transactions on Geoscience and Remote Sensing, vol.31, issue.4, pp.896-906, 1993.
DOI : 10.1109/36.239913

A. Singh, Review Article Digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, vol.43, issue.6, pp.989-1003, 1989.
DOI : 10.1016/0034-4257(79)90013-0

Y. Bazi, L. Bruzzone, and F. Melgani, An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.874-887, 2005.
DOI : 10.1109/TGRS.2004.842441

P. E. Hagen, N. J. Størkersen, and K. Vestgård, HUGIN-use of UUV technology in marine applications, Oceans '99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No.99CH37008)
DOI : 10.1109/OCEANS.1999.805003

B. Jalving, K. Gade, K. Svartveit, A. Willumsen, and R. Sørhagen, Dvl velocity aiding in the hugin 1000 integrated inertial navigation system Available: www.navlab.net [13] K. Gade NavLab, a generic simulation and post-processing tool for navigation HISAS 1030: The next generation mine hunting sonar for AUVs, Proceedings from ADCPs in Action UDT Pacific, pp.51-59, 2004.

T. G. Fossum, P. E. Hagen, B. Langli, and R. E. Hansen, HISAS 1030: High resolution synthetic aperture sonar with bathymetric capabilities, Shallow survey, 2008.

D. H. Johnson and D. E. Dudgeon, Array signal processing: Concepts and Techniques, ser. Signal processing series, 1993.

S. A. Synnes, R. E. Hansen, and T. O. Saebø, Assessment of shallow water performance using interferometric sonar coherence, Proceedings of Underwater Acoustic Measurements, 2009.

E. Coiras, J. Groen, D. Williams, B. Evans, and M. Pinto, Automatic change detection for the monitoring of cluttered underwater areas, Proceedings of the 1st International Conference & Exhibition on Waterside Security (WSS), 2008.

V. Myers and S. Daniel, Techniques de détection de changements assisté par ordinateur appliquées aux images sonar, Monitoring Quantitatif de lEnvironnement Sous-Marin (MOQESM) conference proceedings, 2010.

R. F. Hanssen, Radar Interferometry: Data Interpretation and Error Analysis, 2001.
DOI : 10.1007/0-306-47633-9

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.2553

H. Bay, T. Tuytelaars, and L. Van-gool, Surf: Speeded up robust features, European Conference on Computer Vision, pp.404-417, 2006.
DOI : 10.1007/11744023_32

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.679.3046

. Fig, SAS image before deployment of targets (upper), after deployment of targets (middle), and difference image (lower) The dynamic range is 45 dB in all three images. Note that the deployed target (the changes) are clearly visible in the difference image although the area is highly cluttered