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ABSTRACT

In the last decade, the applications of the recurrence plot analy-

sis method make it a valuable alternative to the time-frequency and

time-scale tools. As it was initially developed for the study of dy-

namical systems, and was later used in nonlinear time series analysis,

the question of using it as a signal processing tool has not been put

into discussion yet. In this field the projective techniques are largely

used, with good results. Nevertheless, they also have some limi-

tations – especially regarding transient signal processing. But this

kind of signals are ubiquitous in real world. In addition, propagation

through various media as well as on multiple paths lead to delayed,

attenuated and dilated versions of the original transients. In this pa-

per we study the behaviour of the recurrence plot analysis method in

the context of analyzing some finite duration signals being subject

to rescalings of the amplitude and time axes. This study is a starting

point in employing the analysis of recurrences in investigations of a

large class of real world signals.

Index Terms— Transient signals, recurrence plots, amplitude

and time scaling

1. INTRODUCTION

Recurrence plot analysis [1] has its roots in a 1987 paper by Eckman

et al [2]. They introduced the recurrence plot as a ”new graphi-

cal tool for measuring the time constancy of dynamical systems”.

Although its initial purpose was to obtain dynamical parameters

from time series, it was subsequently applied in various areas

of the field of nonlinear time series analysis. According to [3],

the methods based on recurrence plots have been successfully ap-

plied in ”physiology, neuroscience and genomics, ecology, physics,

chemistry, earth science and astrophysics, engineering and econ-

omy”. The bibliography gathered on the recurrence plot website

(http://www.recurrence-plot.tk) shows significant increasing of in-

terest for this tool in the last ten years, with a peak in the last three

years. However, very few applications of recurrence plots were re-

ported in signal processing – mostly in speech processing and signal

detection (e.g. [4, 5, 6, 7]). The integration of this technique in the

signal processing field seems natural, as there is a strong similarity

between recurrence and frequency. This represents the main objec-

tive of our paper. Hence, we start by studying the effects of scaling

the amplitude and the time axis of the signal on the resulting recur-

rence plot. Scaling phenomena (like attenuations and dilatations)

are common in real world signals. The issue of dilatations has been

solved by the wavelet transform, but the choice of the proper mother

wavelet is not always possible for all signals. On the other hand,

recurrence plot analysis does not need a reference signal, as it only

compares the analyzed signal to itself.

The paper is organized as follows. In the following, we intro-

duce first the principle of recurrence plot analysis and we continue

by presenting the effects of scaling the signal amplitude. Then, we

present the effects of time scaling and we continue with a short dis-

cussion regarding the potential of the obtained results. We close by

pointing out the conclusions.

2. RECURRENCE PLOT ANALYSIS

Figure 1 summarizes the generic steps of the recurrence plot analysis

method. They are briefly discussed in the following paragraphs.

(1) – Representation of the signal as a trajectory in a multidi-

mensional space. This is performed with the aid of the method of

delays. If m is the dimension of the representation space and τ is

the time delay, then the phase space trajectory corresponding to the

signal s(t) is:

~r(t) =

m
X

k=1

s (t + (k − 1)τ) · ~ek, (1)

where ~ek are the versors of the phase space axes. Hence, the time

evolution of the trajectory will be the same on all the m axes, except

for time delayings by multiples of τ .

(2) – Computation of the recurrence plot. A recurrence between

points at times i and j on the trajectory is defined as:

R(i, j) = Θ (ε(i) − D (~r(i), ~r(j))) , (2)

where Θ denotes the Heaviside step function, and D (~r(i), ~r(j))
stands for the distance between points i and j on the trajectory.

In fact, Equation (2) shows that a recurrence is identified between

points i and j on the trajectory if the distance between them is

smaller than a threshold ε(i), known as the recurrence radius. Most

often, a constant ε is used, and the distance D is computed using

the Euclidean metric. (We noticed that in most cases it is sufficient

to choose ε as the mean distance between successive points of the

trajectory.) However, it might sometimes be useful to work directly

with the distance plot (i.e the graphical representation of D).

(3) – Quantification of the recurrence plot. It consists in per-

forming different computations on the recurrence plot, in order to

obtain some measures that are able to offer some insight into the

analyzed signal. The most common such measure is the recurrence
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Fig. 1. The steps of recurrence plot analysis: (1) phase space representation of the signal; (2) computation of the recurrence plot; (3)

quantification of the recurrence plot. In this example, signal s(t) is obtained from a chaotical Lorenz system. The trajectory ~r(t) is obtained

using a dimension m = 3 and a delay τ = 3. It can be noticed that ~r(t) has strong similarities with the well-known Lorenz ”butterfly”

attractor. The transitions of the system from one unstable periodic orbit to the other can be identified using the significant maxima of the

locally-computed (by using a window of size 10) recurrence rate, RR(t).

rate, RR. It is computed as the ratio between the total area occupied

by black dots (recurrences) in the recurrence plot and the total area

of the recurrence plot. The recurrence rate, as well as other quan-

tification measures, can be computed either globally, for the whole

recurrence plot, or locally, on time windows that are being shifted

along the main diagonal of the recurrence plot. In this way, a time-

varying measure, RR(t), will be obtained.

Various recommendations can be found in literature regarding

the choice for the parameters of the recurrence plot analysis method

(i.e. m, τ , ε, D) [3]. Only the most commomly used recurrence-

based analysis method was presented in this section.

3. AMPLITUDE SCALING

As the phase space representation of the signal is a linear operation,

scaling the signal amplitude will result in an appropriate scaling of

the trajectory. If for signal s(t) we have trajectory ~r(t), then for

signal s′(t) = α · s(t) we have:

~r′(t) =

m
X

k=1

α · s (t + (k − 1)τ) · ~ek = α · ~r(t). (3)

Let us see whether this scaling of the trajectory has any effect on the

recurrence plot. If the recurrence plot corresponding to signal s(t)
is R(i, j), then the recurrence plot corresponding to signal s′(t) will

be:

R′(i, j) = Θ
`

ε′(i) − D (α · ~r(i), α · ~r(j))
´

. (4)

The distance D is usually computed using a certain metric, that is:

D (~r(i), ~r(j)) = ‖~r(i) − ~r(j)‖. (5)

In this case, in order for R′(i, j) to be identical to R(i, j), ε′(i)
should be chosen such that:

ε′(i) = α · ε(i). (6)

(a) (b)

Fig. 2. The shape of the neighbourhood (in a tridimensional phase

space) is a sphere for the Euclidean metric (a) and a cone for the

angular distance (b).

However, this scaling of the recurrence radius is no more needed

when using an angular distance, defined as:

D (~r(i), ~r(j)) = arccos

„

~r(i) · ~r(j)

‖~r(i)‖ · ‖~r(j)‖

«

, (7)

for non-zero vectors (otherwise vectors can be considered paralell,

i.e. the angular distance between them is 0). This definition for D
leads to a recurrence plot that is invariant to amplitude scalings of the

analyzed signal. We note that this angular distance generates conical

neighbourhoods (instead of the spherical ones generated by the Eu-

clidean metric). Figure 2 illustrates this observation. We also note

that by using such a conical neighbourhood the concept of recur-

rence loses its initial meaning (that is returning close to a previously

visited point) – therefore, we are actually working with a generalized

recurrence.



Fig. 3. Time-scaled one-period sinusoidal signal and the correspond-

ing trajectories. From top to bottom, β is: 1, 1.73, 0.61, and τ is:

250, 250/1.73, 250/0.61. The shape of the trajectory remains un-

changed.

4. TIME SCALING

If s(t) is the signal, the time-scaled version of it is s′(t) = s(β · t).

The corresponding trajectory will be:

~r′(t) =

m
X

k=1

s
`

βt + (k − 1)βτ ′
´

· ~ek. (8)

We notice that scaling the time axis of the signal leads to an appro-

priate scaling of the time delay (the τ parameter). For the trajectory

to remain unchanged, τ ′ should be chosen such that:

τ ′ =
τ

β
. (9)

Figure 3 shows that the trajectories indeed remain unchanged when

τ is properly scaled. However, Equation (8) shows that ~r′(t) is not

identical to ~r(t). Figure 3 does not reflect the time evolution, and

therefore ~r′(t) and ~r(t) seem identical. In fact, trajectory ~r(t) is

”drawn” β times faster (or slower, depending on whether β is greater

than or less than 1) than trajectory ~r′(t). This leads to the contrac-

tion/dilatation of the structures in the recurrence plot, as shown in

Figure 4.

5. DISCUSSION

We have shown in section 3 that we can obtain a recurrence plot that

is invariant to amplitude scaling by using the angular distance. As

for the time scaling, we showed in the previous section that by ap-

propriately scaling the time delay the shape of the trajectory remains

unchanged (Fgure 3), except it is covered with a different speed,

which results in a stretching of the recurrence plot pattern (Figure

4). Failure to meet the constraint in Equation (9), though, leads to
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Fig. 4. The effect of dilatation on the recurrence plot, for a sinusoidal

signal. (left) The recurrence plot of signal s(t) is obtained using

m = 2 and τ = 50. (right) The recurrence plot of signal s(0.61 · t)
is obtained using m = 2 and τ ′ = 82(= τ/0.61). As τ is scaled

appropriately, the pattern remains unchanged, except for the fact that

it is stretched.

significant changes in the trajectory – redundance (when β < 1) or

irrelevance (when β > 1) [8]. It follows that the recurrence patterns

will also be modified. However, when dealing with dilated signals,

i.e. when β < 1, the trajectory does not change its main characteris-

tics, except that it is ”attracted” to the first diagonal of the coordinate

system. (In this case the changes in the recurrence pattern are mostly

due to the use of recurrence balls that have the same dimensions as

those used for the non-dilated signal.)

Figure 5 shows an example of an angular distance plot computed

for a synthetic signal (and Figure 6 repeats the example, after adding

some noise). The signal is composed of four transients coming from

two different sources – the first two of them come from direct prop-

agation between the sources and the receiver, and the last two come

from reflexions (i.e. they are attenuated and dilated). As the figure

shows, the angular distance plot of this signal allows a good time lo-

calization of the four transients, regardless of their scale differences.

More than that, it allows a visual characterization of the transients.

It can be easily observed (by analyzing the blocks on the main diag-

onal, that correspond to the four transients) that we are dealing with

two types of signals (i.e. two different sources). It can also be eas-

ily observed that the first transient is of the same type as the third,

and that the second is of the same type as the fourth. We can make

this statement either as a result of a comparative visual analysis of

their corresponding blocks in the angular distance plot, or as a result

of the fact that their cross-term blocks are composed of diagonally

oriented structures (e.g. the third rectangular block on the first line

of D(i, j) in Figure 5 is the cross-term block between the first and

the third transients; all the black structures in it are oriented along

the first diagonal of the block).This final observation may offer, to-

gether with the observations made in section 4, a good starting point

for developing a robust automatic method for comparing transient

signals.

6. CONCLUSION

We presented in this paper the essential aspects of a nonlinear time

series analysis method called recurrence plot analysis. As this tool

is working its way into signal processing, we proposed to study its

properties in the context of modifying the amplitude scale as well as
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Fig. 5. Angular distance plot for a synthetic signal composed of four

transients coming from two different sources. (The signal-to-noise

ratio is 60 dB.) It is computed using m = 3 and τ = 15. The four

transients can be easily localized in time and characterized as well

by a visual analysis of this image.

the time scale of the signal. We showed that an amplitude scaling

does not lead to a different recurrence plot as long as the recurrence

radius is scaled appropriately. Besides that, we showed an alterna-

tive method to compute the recurrence plot, by using the angular

distance between vectors, and we showed that the recurrence plot

obtained this way is invariant to signal amplitude scaling.We also

showed that a time scaling of the signal does not lead to a modified

trajectory if the time delay is appropriately scaled. The recurrence

plot remains also unchanged, except for the fact that it will com-

pact/expand (without otherwise affecting the characteristics of the

patterns it contains).

This theoretical study may serve as a basis for involving recur-

rence plot analysis in solving problems in the analysis of transient

signals, that are encountered in many real world applications, where

attenuations and dilatations are very common. Further, we are plan-

ning to use the observations made in this paper for developping a

scale-independent method for the characterization of transient sig-

nals.
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