%0 Conference Proceedings %T Continuous belief functions to qualify sensors performances %+ Extraction et Exploitation de l'Information en Environnements Incertains (E3I2) %+ Département STIC [Brest] (STIC) %+ Human-machine spoken dialogue (CORDIAL) %A Doré, Pierre-Emmanuel %A Osswald, Christophe %A Martin, Arnaud %< avec comité de lecture %( ESQARU 2011 %B ESQARU 2011 %C Belfast, Ireland %P xx %8 2011-06-29 %D 2011 %K Sensor performances %K Continuous belief function %K Parametric model %K Inference %K Fusion %Z Engineering Sciences [physics]/Signal and Image processing %Z Computer Science [cs]/Signal and Image ProcessingConference papers %X In this paper, we deal with the problem of sensor performance estimation. As we assume that the sensor is described with only few data, we decide to use the theory of belief functions to represent the inherent uncertainty of our information. Hence, we introduce the belief functions framework, especially in the continuous approach. We describe the model of sensor adopted in our study. Knowing the experimental setting, we suggest an approach to model the sources of information describing our sensor. Finally, we combine these sources in order to estimate sensor performances. %G English %2 https://hal-ensta-bretagne.archives-ouvertes.fr/hal-00636049/document %2 https://hal-ensta-bretagne.archives-ouvertes.fr/hal-00636049/file/paper.pdf %L hal-00636049 %U https://hal-ensta-bretagne.archives-ouvertes.fr/hal-00636049 %~ ENSTA-BRETAGNE %~ EC-PARIS %~ UNIV-RENNES1 %~ CNRS %~ INRIA %~ INSA-RENNES %~ ENSSAT %~ INRIA-RENNES %~ IRISA %~ ENSTA-BRETAGNE-STIC %~ IRISA_SET %~ ENSIETA-E3I2 %~ TESTALAIN1 %~ IRISA-D6 %~ INRIA2 %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INRIA-RENGRE %~ INSA-GROUPE %~ UR1-MATH-NUM