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Localization in Underwater Dispersive
Channels Using the Time-Frequency-Phase

Continuity of Signals
Cornel Ioana, Arnaud Jarrot, Cédric Gervaise, Yann Stéphan, and André Quinquis

Abstract—Time-frequency representations constitute the main
tool for analysis of nonstationary signals arising in real-life sys-
tems. One of the most challenging applications of time-frequency
representations deal with the analysis of the underwater acoustic
signals. Recently, the interest for dispersive channels increased
mainly due to the presence of the wide band nonlinear effect
at very low frequencies. That is, if we intend to establish an
underwater communication link at low frequencies, the dispersion
phenomenon has to be taken into account. In such conditions, the
application of the conventional time-frequency tools could be a
difficult task, mainly because of the nonlinearity and the close-
ness of the time-frequency components of the impulse response.
Moreover, the channel being unknown, any assumption about the
instantaneous frequency laws characterizing the channel could not
be approximate. In this paper, we introduce a new time-frequency
analysis tool that aims to extract the time-frequency components of
the channel impulse response. The main feature of this technique
is the joint use of time-amplitude, time-frequency, and time-phase
information. Tests provided for realistic scenarios and real data
illustrate the potential and the benefits of the proposed approach.

Index Terms—Dispersive channels, time-frequency analysis,
time-varying systems, underwater acoustics.

I. INTRODUCTION

T HE field of signal analysis is a very important element
in a system of representation and/or information extrac-

tion. Considering the generally nonstationary behavior of the
observations encountered in real applications, their analysis in
time-frequency domain constitutes the most appropriate tech-
nique to identify the relevant structures for information pro-
cessing.
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A typical application of time-frequency analysis is the un-
derwater signal processing, due mainly to the nonstationarity of
the underwater signals. In this area, considering the dispersive
behavior of the underwater channel became very important,
especially in the case of underwater systems operating at low
frequencies (mainly, below 200 Hz). As we show in this paper,
a dispersive channel modifies a transmitted signal in a complex
way, introducing multicomponent structures with nonlinear
time-frequency shapes. More precisely, a dispersive channel
produces different delays of spectral components according to
their frequencies: high frequencies propagate faster than the low
ones [1]. The transformation of signal propagating in dispersive
channel can be characterized by a nonlinear change of the phase
function of the signal: where is the reference time. For
example, in shallow water environment, the phase changes ac-

cording to ,
where is the source-receiver range and is the sound speed in
water column [8]. This change is specific to each propagation
path. In conclusion, a signal received in a dispersive channel
is composed of many components, each one having distinct
time-frequency shape according to its propagation mode [1]. In
addition, these components are very close in time which makes
it difficult to separate them.

The dispersion phenomena occur in different domains such as
underwater environment, dielectrics, radio waves in ionosphere,
etc. Their analysis could be of great help since the knowledge
of dispersion allows understanding the physical phenomena be-
hind the dispersion. Knowing the dispersion behavior of the
channel helps improving the efficiency in many applications
such as communications, localization, etc.

The main idea, proposed in [2], is to employ matched
time-frequency spreading functions that depend on .
Using this concept, the output of a dispersive system can
be expressed as the superposition of dispersive signal trans-
formations weighted by these matched dispersive spreading
functions. In spite of its accuracy, the concept introduced in
[2] is difficult to implement in practice since it is based on
continuous signal transformations. Discrete formulations have
also been proposed based namely on the decomposition of
narrowband spreading function into a weighted summation
of sampled time-frequency shifts, multiplied by a smoothed
discrete version of the spreading function [3]. Recently, the
discrete characterization of dispersive time-varying systems
has been proposed as the generalization of the discrete nar-
rowband time-frequency model [4]. More precisely, assuming
the function , the approach proposed in [4] unifies the
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discretization procedure for any dispersive system through uni-
tary warping between narrowband spreading function and the
dispersive spreading function. Using this characterization, the
authors proposed a time-frequency RAKE receiver exploiting
the joint multipath-dispersion diversity. Its successful use for
communication over dispersive underwater channel has been
proved.

The aforementioned approaches establish a general frame-
work for signal processing in dispersive media. The character-
ization of such environment in terms of wideband spreading
function is very well suited for receiver structure design adapted
to dispersive environment. Nevertheless, the accuracy of this
characterization depends strongly on the a priori information
of the phase change, . There are several cases when in-
formation on the phase deformation are available. For example,
if the geometrical and physical parameters of the channel are
known, the phase deformation could be numerically evaluated
using the theory of modes [1]. Two cases have been extensively
studied in the literature, mainly because they can be analytically
modeled: iso-velocity channel (i.e., channel having the same
sound velocity over all volume) [1] and Pekeris channel [6]. In
other cases, numerical simulations are used to asses physical
properties of dispersive channels basically based on the concept
of matched-field processing [26]. In operational context, the un-
derwater dispersive channels are estimated using techniques de-
veloped in seismic exploration [27]. That is, the channel is esti-
mated by exploring received signals by a sensor network when
the wideband signals are transmitted from explosive sources.
The inversion is done by processing received data (using wavelet
transforms, for example [27]) and referring to the source posi-
tion which is known. In addition, the inversion is more efficient
when the source-receiver range is large since modal arrivals are
better separated in time domain.

In passive configurations (i.e., no information available about
the source position and transmitted signal), if the channel is
unknown and there is no time for its characterization by con-
ventional techniques (bathymetry or multisensor tomography),
which could be the case of military operations in shallow water,
information about phase changes due to the dispersion are diffi-
cult to obtain. In this case, one possible solution is to investigate
the channel characteristics by taking advantage of signals prop-
agating in this channel. Hence, analyzing precisely the signal
received from a dispersive channel could help us to find out
information about the phase changes due to the dispersive ef-
fects. This information, used in addition with the spread func-
tions-based methods [4], [5], could provide an efficient char-
acterization of dispersive channel in realistic (i.e., no a priori
information available), general (performing in any type of dis-
persive channel) and operationally blind (i.e., we can use signal
existing in the channel as an echolocation signal, for example)
contexts.

In this paper we propose a methodology for estimation
of phase change functions induced, on an arbitrary
transmitted signal, by a dispersive channel. Since no a priori
information on signals is available, the methodology ex-
ploits the coherence of fundamental parameters of any type
of signals: amplitude, frequency and phase. Specifically, the

time-frequency structures of received signal will be separated
by analyzing their continuity in terms of instantaneous ampli-
tude, phase, frequency. Since these structures are close (because
of the multipath propagation effect) the continuity criteria will
be aimed to provide high-resolution capabilities. Furthermore,
once the time-frequency structures are estimated, they will be
filtered by using the generalized time-frequency filters struc-
tures [7]. Finally, individual analysis of each structures and
comparison between successive arrivals provide information
about phase changes due to the dispersion.

This methodology is demonstrated in the context of under-
water dispersive channels. Realistic configurations will be used
in order to illustrate the performance of the proposed approach.
Although the performance is illustrated in the underwater con-
figuration, the proposed approach is general since it exploits
fundamental attributes related to any type of signals (amplitude,
phase and frequency).

The paper is organized as follows. In Section II we briefly dis-
cuss the problem of signal processing in the context of disper-
sive propagation channels. In Section III we define the concept
of time-frequency-phase continuity and illustrate its benefits on
synthetic data. The methodology of dispersive phenomena es-
timation is introduced in Section IV. The results provided in
Section V illustrate the benefits of this concept in the context
of underwater blind low-frequency source localization. We con-
clude in Section VI.

II. MODELING SIGNAL RECEIVED FROM AN UNDERWATER

DISPERSIVE CHANNEL

The acoustic waves are widely used in underwater channels
for communications, detection, localization or estimation of
physical properties. The underwater channel provides the
best propagation support for acoustic waves but the trans-
mitted signal is often distorted. The distortions are generated
by physical parameters of the water column (water density,
sound speed profile), parameters of sea bottom (density and
sound speed of seabed layers, attenuation coefficients, etc.),
geometrical parameters (depth, bathymetry). These distortions
have to be considered in order to ensure satisfactory receiving
performances.

The parameters of the transmitted signal are chosen according
to the operational purposes of the system. Hence, the central
frequency of the spectrum depends on the required transmission
ranges. In this paper, we address the problem of signal analysis
in the context of long-range communications in shallow water
medium. Under these conditions, one mathematical solution for
modeling the propagation phenomena is the theory of modes [9].
According to this theory, the transfer function of the underwater
acoustic channel defined between a transmitter located at
and a receiver located at (Fig. 1) can be expressed (after
few simplifications related to boundary conditions) as

(1)
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Fig. 1. Configuration source-receiver in an underwater environment.

where are the horizontal wavenumbers, are the
modal functions (or Green functions) of index and they are
solutions of the equation:

(2)

where is the sound speed profile.
The expression (1) can be written, in a simplified form, as:

(3)

This expression states clearly that the transfer function of
a dispersive underwater channel has a multicomponent struc-
ture, each component being defined by its wavenumber and fre-
quency. The term represents the attenuation rate
of corresponding component. It depends on the modal functions
corresponding to the transmitter and receiver depths (1), to the
wavenumber and to the range between transmitter and the re-
ceiver. The response of this component to one monochromatic
signal, , can be written as

(4)

The th-order component of the transfer function produces,
when the input is a monochromatic signal, a signal similar to one
wave traveling from transmitter to receiver. Its wavenumber is

and the expression (4) allows us to define the phase
and group velocities [6]:

(5)

As indicated in [9], the wavenumber is “respon-
sible” for the dispersion phenomena. More precisely, for distinct
index and, at the same frequency , the arrivals of modes. th
will have different phase and group velocities. This phenom-
enon is called intermodal dispersion. On the other hand, in the
case of a single th-order component, the wavenumber is fre-
quency dependent. This is called intramodal dispersion. Under
these considerations and using the (4) and (5) we can define the
channel impulse response as follows:

(6)

A quadratic time-frequency representation of the channel im-
pulse response (Wigner–Ville distribution, for example) leads to
the following expression:

TFR TFR

TFR

TFR (7)

where TFR is the time-frequency representation of the trans-
mitted (or input) signal.

This expression can be interpreted as follows: one source
transmitting energy at and with frequency will be trans-
formed, via the propagation in a channel defined by (6), in a set
of energy packets arriving at and weighted by

.
The expression (7) shows the complexity of the received

signal in a dispersive channel. Hence, even if a simple signal is
transmitted, the propagation will introduce both frequency-de-
pendent and propagation path-dependent attenuations and
delays. These produce a nonlinear time-frequency deforma-
tion, specific for each propagation path. To illustrate these
phenomena we consider an iso-velocity underwater channel
with a rigid bottom. The depth of water column is and sound
velocity, constant over all channel, is . Such a channel is
illustrated in Fig. 1 and its choice is motivated by the fact
that only iso-velocity channels are characterized by analytical
solutions of the propagation equation [9].

Under these assumption, the expressions of the wavenumber
and group velocity are

(8a)

(8b)

The expression (8a) shows that, for a given frequency , if
, the wavenumber, , can have imaginary

values. This corresponds to strongly attenuated modes.
The group velocity depends on the frequency, and on the

mode number, as shown in (8b). For high-order modes, the
waves are slow at a given frequency (intermode dispersion ef-
fect). Otherwise, for a given mode, the wave velocity increases
with the frequency (intramode dispersion effect).

These (8a) and (8b) are evaluated in the case of an iso-ve-
locity waveguide of depth 16 m and for a source and re-
ceiver located at 4 m depth. The source–receiver range is 2000
m. Fig. 2 displays the impulse response of this channel. The
dispersion phenomenon is visible especially to the low frequen-
cies [Fig. 2(a)]. Fig. 2(b) shows the received signal propagated
by this channel when the transmitted signal is a chirp with the
following parameters: duration, 1s; 0 Hz;
1000 Hz. As we can remark on this picture the high frequen-
cies arrive firstly as well as the modes with small indexes .
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Fig. 2. Time-frequency representations of the impulse response of an isoceler dispersive channel (a) and the received signal from this channel (b).

The results illustrated in Fig. 2 confirm the theoretical
statements presented above. They are available for iso-velocity
waveguides which constitute the simplest case. If the sound
speed profile is arbitrary the dispersion effect is much more
complex and no analytical model can be formulated. In terms
of signal analysis, even this simplest case illustrates the dif-
ficulties arising from dispersion effect. If the chirp is used as
the transmitted waveform of an underwater positioning system,
for example, the dispersion avoids using of match filtering of
received signal: the efficiency of this traditional processing
tool is affected by the time-frequency composition changing
due to the dispersion [Fig. 2(a)]. Some physical assumptions
concerning the channel seem to be necessary if the optimal
processing (in the sense of match filtering) is required.

The aim of the Sections III–V is to propose a methodology
for characterizing the time-frequency content of the dispersive
arrivals. This information is essential to asses the physical be-
havior of the channel.

III. THE CONCEPT OF TIME-FREQUENCY-PHASE CONTINUITY

As indicated in the previous section, the signal issued from
a dispersive channel contains several nonlinear time-frequency
structures having different laws strongly related to the physical
properties of the channel. In real configuration, the assumptions
necessary to assess physical considerations about the channel
are difficult to make. The approach proposed in this paper pro-
vides information about physical considerations by processing
only the received signal. Taking into account the nonstationarity
of the signal, the time-frequency analysis seems to be an appro-
priate processing tool. The spectrogram of the first four modes
defined in Fig. 2 is illustrated in Fig. 3.

As shown by Fig. 3, identifying the four components is not
a simple task. The linear representation [Fig. 3(a)] shows only
two modes the other two being invisible because of their much
smaller energies with respect of strongest ones. One can use
a logarithmic representation [Fig. 3(b)], with the price to pay
being the poorer resolution. For these reasons, the extraction of
each individual mode could be a complex problem.

Fig. 3. Spectrogram of the first four modes defined in Fig. 2(a). (a) Magnitude
of spectrogram. (b) Log magnitude of spectrogram.

More generally, the extraction of nonlinear time-frequency
structures is an active area of research in the field of time-fre-
quency analysis. The problem becomes very complex if no
a priori information about the analyzed signal are available.
This is actually the case considered in this paper: the aim
is to identify the dispersive behavior of underwater channel
considering, as observing data, the signals issued from this
channel corresponding to an impulsive transmitting signal.
As indicated in Fig. 3, the time-frequency analysis context
is complex even in the case of a synthetic data. That is, the
time-frequency structures are nonlinear (with distinct shape)
and they are very close, very often out of the resolution limits
of well known time-frequency distribution. In [4] and [5],
the authors proposed a physical driven algorithm for mode
extraction in a dispersive channel. Hence, the idea is to assume
a given physical model of the channel parameterized by some
unknown parameters that have to be estimated. Furthermore,
using some warping-based time-frequency representations (pa-
rameterized by set of possible values of channel’s parameters)
of the received signals, the best stationarization will correspond
to the channel’s parameters closest to real configuration. This
interesting methodology can provide an optimal result if a large
set of channel’s parameters is tested in order to find the best
solution.

One alternative solution, avoiding considering a large number
of parameters values, is to look for the coherence of funda-
mental signal’s parameters: instantaneous amplitude, frequency
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and initial phase. Assuming that each signal’s time-frequency
structure could be modeled, in accordance with the Weierstrass
theorem, by mean of a polynomial function, the model of re-
ceived signals is expressed as

(9)

where: is the received signal composed by components,
is the amplitude envelope of th component (considered

slowly varying with respect of instantaeous phase), is the
time-varying phase of th component and is the noise. In
the case of signals issued from an ideal dispersive channel, the
phase of one component is expressed with (4). In the general
case of arbitrary channels, an analytic expression does not exist.
In this section, we define a general framework which is aimed
to provide an estimation of the phase function of each compo-
nent knowing that the phase does not admit any analytical
form.

The estimation of the phase function of th component can
be expressed as a maximum-likelihood estimation problem. Let

and be defined by

Noise only
Signal and noise

(10)
where is the initial phase and is the amplitude modu-
lation law, supposed slowly varying in comparison with the in-
stantaneous phase low, . Here, represents the case when
the received signal contains no signal and represents the case
when the received signal contains at least the th component. In
such a case, all the components different from th are considered
as noise. Thus, a possible solution to find the estimated phase
law that best matches the true phase law consists to
maximize the log-likelihood ratio defined as

(11)

between the statistics and of and , re-
spectively. In order to make the maximization independent of
the two parameters , a possible solution consists to replace
the maximum-likelihood estimation of each unknown quantities
assuming that all other parameters are known. This approach,
called generalized maximum likelihood [10], gives for the esti-
mation of , ( —the number of samples)

(12)

and

(13)

Fig. 4. Illustration of the exhaustive search procedure.

Fig. 5. Exhaustive searching and optimization results.

where denotes the complex angle of .
However, this approach remains difficult to solve by direct

computation. For this reason we shall restrict ourselves to an
exhaustive search of the best phase estimate. Because of the ex-
treme variability of , an exhaustive search over all time-fre-
quency pairs is not computationally viable. Our strategy con-
sists in performing an exhaustive search over a local but general
model of the instantaneous phase. Hence, we carry out the pro-
cessing over a time window. This is illustrated in Fig. 4 where
the characterization of an arbitrary time-frequency component
(solid line) is considered.

As indicated in Fig. 4, in each window, a set of time-frequency
component is constructed for different nodes (i.e., a node is de-
fined by a pair of time and frequency coordinates) over a grid
parameter. For each component, the log-likelihood is estimated
over the window and a finite number of components, , giving
highest likelihood is selected. Let us denote a component over
the window as . Then, in order to optimize the value of the
selected nodes, an optimization is performed using a simplex
method [11] with the selected time-frequency points as initial-
ization. The result obtained after this step is illustrated in Fig. 5.

The next step consists of regrouping the detected compo-
nents. Since each component represents a local model,
the goal of this regrouping step is to find the values of ,

that best represents the original component
with respect to the maximum-likelihood criterion. Hence,

our strategy consists of associating two components from two
adjacent windows ( and ), and , if they sat-
isfy some time-frequency-phase coherence criteria. Four such
criteria are defined.

1) time-frequency continuity. This criterion is given by
where

is the initial frequency of component

and is the final frequency of component .
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Fig. 6. � time-frequency continuity.

Fig. 7. � time-frequency continuity.

This criterion is based on the frequency discontinuities
between the component and (Fig. 6). For ex-
ample, if has high value, the probability
that and belong to the same time-frequency
component is low.

2) time-frequency continuity. This criterion is given by
where

and , respectively, denote the ini-
tial and final instantaneous frequency rates of the compo-
nents and . As indicated by Fig. 7, this criterion
rules the connection of and in the following way
if the rates of IFLs are almost the same the time-frequency
content variation is smooth being subject to a single com-
ponent (Fig. 7). In this case, and are merged.
If the rates are too different, then both components do not
belong to the same structure.

3) Amplitude continuity. This criterion is given by
where

denote the maximum-likelihood amplitude of
estimated by (12). This criterion reflects the general

observation that the energy of a time-frequency compo-
nent varies slowly.

4) Instantaneous phase continuity. The criteria is
given by

where
and respectively denote initial

and final instantaneous phases, estimated by (13). This
criterion merges two candidate components if the phase
is continuous.

With these criteria, we define the penalty function of two
components estimated from two adjacent windows by

(14)

where the coefficients , , , are the weights for each criteria.
The regrouping strategy consists of searching over all the pos-

sible values , to find the that minimizes
the penalty function based on these four criteria

(15)

The minimization of this penalty function enables us to ex-
tract individual time-frequency structures. This information will
be used in order to filter out time-frequency signal’s components
as discussed in Section V.

IV. METHODOLOGY OF DISPERSIVE PHENOMENA ESTIMATION

The goal of the method introduced in this section (Fig. 8) is
to perform the iterative extraction of each component of a signal
modeled by (9). At the first iteration, the time-frequency-phase
criteria introduced previously provides the time-frequency re-
gion occupied by the most energetic component. Once this re-
gion estimated, we use a nonstationary time-frequency filter in
order to physically extract the signal bounded by this region [7].

Once the extraction has been performed by filtering out the
corresponding component, the residual is analyzed with the
same time-frequency-phase criteria. This step is iterated times
in order to extract other time-frequency components.

We illustrate the steps of this algorithm using the signal de-
fined in (16) and (17). The synthetic signal is composed of two
components having different IFLs: sinusoidal frequency modu-
lation and fourth-order polynomial phase modulation:

(16)

where and are the amplitude variations of the two
components. Two cases will be considered in our simulations:

Without modulation:

With modulation:

(17)

The IFLs and the amplitude variations (for the second case)
are represented in Fig. 9(a). We remark the nonlinear shape
of the time-frequency content of the signal. Its analysis, using
quadratic time-frequency distributions belonging to Cohen’s
class, is subject to some limitations related to the trade-off be-
tween resolution and interferences terms (both inner, due to the
nonlinearity of the time-frequency content, and cross terms),
as indicated in Fig. 9(b), where smoothed pseudo-Wigner
distribution has been used (the window used is Kaiser). In
the context of inherent limitations of the linear or quadratic
TFR, the estimation of instantaneous frequency laws of such
signals is, since the 1990s, a field of high interest for signal
processing community. A first concept that deals with such
problem has been developed from the Wigner–Ville distribution
as an extension of this well known method to polynomial phase
signals (PPS). Hence, the polynomial Wigner–Ville distribution
has been introduced as an appropriate method for analyzing the
PPSs [13]. Other techniques have been developed, attempting
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Fig. 8. Method for component extraction.

Fig. 9. Synthetic signal and its time-frequency characterization using smoothed pseudo-Wigner distribution and PHAF results. (a) Theoretical IFLs and amplitude
modulations of the analyzed signal. (b) SPWD of synthetic signal (c) PHAF estimation-without amplitude modulations. (d) PHAF estimation-without amplitude
modulations.

to adapt the polynomial TFR for multicomponent signals [14]
or to improve its robustness in noise conditions [15]. The mul-
ticomponent signals and the concentration of the polynomial
TFR are still current problems, and many researchers focus on
them.

Another class of time-frequency techniques devoted to non-
linear T-F contents is based on a warping operator [18], [19].
However, in the context of the polynomial phase signals, these
techniques are not always easy to apply while they require that
the instantaneous phase be an invertible function (for warping
operator design).

The parametric characterization of the polynomial phase sig-
nals has been developed around the concept of high-order ambi-
guity function (HAF) [16]. The instantaneous phase of a signal
is estimated by a polynomial whose coefficients are calculated
from the maximum values of the HAF. The main problems of
the HAF are related to the multicomponent signals and noise
robustness. A powerful solution has been proposed in 1998 by
Barbarosa and his collaborators [17], and it combines the HAFs
evaluated for several sets of lags. The product of these HAFs

[which gives the bale of the method—product high order am-
biguity function (PHAF)] provides high noise robustness and
good capabilities for multicomponent signals. For these reasons,
this method will be compared with the method proposed in this
paper.

The concepts of polynomial TFRs are generally limited in the
context of high-order polynomial instantaneous phase. There-
fore, the short-time polynomial TFR constitutes the general so-
lution for the estimation of the instantaneous phase requiring
high-order polynomials. Such strategy is indicated for synthetic
signal used in our simulations as shown in Fig. 9(c): the short-
time third-order PHAF has been applied in a window of 256
points. We remark that the estimated IFLs (solid curves) are
close to the theoretical IFLs (indicated by dashed curves). To
deal with the multicomponent structure of the test signal, the
PHAF-based procedure is as follows: in a given window, the
IFL of the most energetic cubic FM is estimated and then sub-
tracted before the estimation of the second component.

As indicated in Fig. 9(c), the PHAF-based method provides
accurate IFL estimations in the case of two PPS with constant
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Fig. 10. Organization of the IFL estimation method proposed in this paper. (a) Short time projection on cubic FMs. (b) Correlation coefficients. (c) Short-time
T-F filters. (d) Two candidate T-F paths. (e) First extracted component. (f) Second extracted component.

amplitudes (without amplitude modulations). The efficiency de-
creases when the signal’s components have varying amplitudes
[Fig. 9(a)]. This is shown in Fig. 9(d). where we remark that, in
each window, only the most energetic component is relatively
well estimated. After the subtraction, its amplitude modulation
is still present and, consequently, the estimation of the second
component is considerably affected [Fig. 9(d)]. Actually, while
the amplitude modulations are not taken into account (by this
version of PHAF-based IFL estimation), the PHAF models the
interferences between the second component and the amplitude
variation of the first one. Another consequence is the interpreta-
tion of the short-time IFL modeling. As it is shown in Fig. 9(d),
because of the amplitude variations, the first half part of sinu-
soidal modulation and the last half part of fourth-order PPS are
well estimated. An eventual fusion of the short-time modeled
IFLs would lead to a wrong time-frequency structure (solid blue
curve).

In order to avoid these problems related to polynomial phase
modeling, the methodology based on time-frequency-phase
continuity is introduced, providing, as we show in the fol-
lowing, more flexibility for signals with both amplitude and
nonlinear frequency modulations.

The first step of this methodology consists of partitioning the
signal into a given number of analysis windows [Fig. 10(a)]. In
the th window, we define a set of third-order frequency modu-
lations (cubic FM) with is the number
of components). From this set of components, we will retain
the most correlated cubic FMs with the signal samples corre-
sponding to the considered window. For the analysis done in the
fourth window, the correlation coefficients with several cubic
FMs are plotted in Fig. 10(b). We observe that there are three
groups of coefficients. The first one correspond to the correla-
tion with the signal’s part associated to the four-order PPS that,
for the considered window (fourth one), is the most energetic.
This leads to strong correlation coefficients. The second group
of correlation coefficients [Fig. 10(b)] corresponds to the cor-
relation with cubic FMs modeling, in the fourth window, the
sinusoidal frequency modulation. While this component of the
signal (equations (16)–(17)) is weaker, the corresponding co-
efficients are smaller than previous ones. Finally, we illustrate,
in Fig. 10(b), the third group of the coefficients which are very
small: they correspond to the correlation with other cubic FMs
[dashed curves in Fig. 10(a)] that are not similar to any com-
ponent of analyzed signal. The small values of the correlation
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coefficients indicate that the corresponding cubic FMs cannot
be included in the retained set of cubic FM .

For each time-frequency curve corresponding to the set of
cubic FMs with obtained in the first step
(Fig. 10), we design a time-frequency filter [7], [20] which is
aimed to extract the samples corresponding to time-frequency
content of the signal. The local time-frequency filters, for
the most correlated cubic FMs with the both signal’s compo-
nent, are plotted in Fig. 10(c) (for simplicity reasons, we plot
only two filters per analyzing window knowing that, for each
window, filters are designed). The signal obtained from
each local time-frequency filtering is used to compute, via
(12)–(13), the instantaneous amplitude and phase, respectively.
The computation of time-frequency-phase criteria (see the
previous section) is done between all instantaneous phases of
adjacent window. Therefore, different time-frequency paths are
obtained each one having a given value of penalty function. For
our example, we consider two paths composed, between in the
interval 1–512 samples, by the same time-frequency structure
and, after the sample 512, by the two paths represented in
Fig. 10(d). The path, represented by dashed curve [Fig. 10(d)],
corresponds to stronger correlation coefficients [Fig. 10(b)]
while the path plotted by solid curve correspond to the weaker
correlation coefficients. Despite the difference between corre-
lation coefficients, the penalty function is smaller in the case
of the path represented by a solid curve. The penalty function
we used is composed only of criterion with a weight of 10.
More precisely, we strongly penalize the discontinuity of IFLs
as shown in Fig. 10(d). The transition from IFL corresponding
to samples to the IFL represented by dashed curve is
highly penalized which avoid the fusion of the mentioned path.
In conclusion, the minimization of global penalty function
ensures, in the second step, the modeling of one of the signal’s
time-frequency structure. Off course, according to the signal’s
type, the criteria should be differently defined. For example, in
the case of FSK signals, the initial phase continuity criterion
should be used with the highest weight. In our case, while we
assume that we deal with continuous IFLs, the choice of the
criterion is adopted.

The estimated IFL, obtained from the minimization of
the penalty function, is used, in the third step, to design the
global time-frequency filter that will extract the corresponding
component of the signal. For the test signal, the global time-fre-
quency filter designed from the path previously estimated
[Fig. 10(d)] accurately extracts the sinusoidal frequency modu-
lation [Fig. 10(e); the filter is plotted with dashed curve]. After
the extraction of this component, reapplying the procedure
(according to the iterative algorithm defined in Fig. 8) the
second component is also extracted [Fig. 10(f)]. Off course, the
amplitude modulations will not be exactly reproduced (because
of the crossing or of the filtering effects) but they are still
visible. In addition, the IFLs are accurately estimated.

In order to quantitatively measure these performances, with
respect of existing polynomial modeling tools, the next part of
this section is devoted to the comparisons with multi lag HAF
(introduced by Peleg and Friedlander [21]) and PHAF. As com-
parison parameter, we choose the IFL estimation error IFL

defined as the -norm of the differences between the theoret-
ical IFL and estimated IFL IFLs, respectively

IFL IFL IFL (18)

As an example, a IFL value of .074 corresponds to an es-
timation illustrated in Fig. 9(d) while an error of 0.016 is equiv-
alent to the case illustrated in Fig. 9(c).

The first simulation consists of studying the IFL obtained
for different window sizes. As a test signal we used the sinu-
soidal FM defined by (16). While the estimation methods are
locally applied, this type of analysis could be useful for identi-
fying the “optimal” size of the analyzing window or to establish
a multitaper strategy, as suggested, for example, in [22]. The
window sizes are variable between 160 and 360 points, with a
step of 10 points.

As indicated in Fig. 11(a), for the three methods, some values
of window’s size minimize the IFL error. Hence, a window size
between 210 and 280 points leads to a minimum error of IFL es-
timation. If the window size exceeds these values, the time-fre-
quency content inside the window is too nonlinear and the mod-
eling using cubic FMs becomes subject of increasing errors. If
the window size is below 200 points, the errors increase while
the numbers of samples decreases affecting the consistency of
HAF’s estimator or of the correlation (in the case of the pro-
posed method). In conclusion, for this type of signal, a window
size around 260 samples represents the best choice. In our com-
putation, we considered size of 256 samples (dyadic size, inter-
esting for fast computing reasons).

The second simulation set deals with the noise robustness
study considering the sinusoidal frequency modulation (equa-
tion (16); the amplitude is considered constant) corrupted by an
additive white Gaussian noise with a signal-to-noise ratio (SNR)
between 0 and 15 dB. For each SNR value, 200 realizations have
been used to evaluate the IFL . Fig. 11(b) indicates that the
PHAF and the proposed method have similar performance for
SNR larger than 5 dB. Below this value, thanks to the projec-
tion technique on a large dictionary of cubic FMs, the proposed
method performs sensibly better, having a smaller IFL error.

The third simulation set consists of evaluating the IFL es-
timation accuracy when a two component signal with ampli-
tude modulations is considered. The test signal is the one de-
fined in (16), but the amplitude modulations are characterized
by two polynomials of order three with different coefficients.
These coefficients are chosen, for each realization, under the
constraint of a given ratio between the maximal and minimal
amplitude . In our simulation, this ratio was vari-
able between 1 and 5 with a step of 0.5.

Fig. 11(c) shows that, for the first component (the sinusoidal
frequency modulation), the PHAF and the proposed method
have similar performances: the IFL estimation error decreases
while the ratio becomes larger. Indeed, compared
with the case of ml-HAF, the estimation error increases slowly
(almost linearly). Nevertheless, the differences between PHAF
and the proposed method become significant in the case of the
second component [Fig. 11(d)]. In the case of the PHAF, the re-
duction of the first component is not accurately done for high
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Fig. 11. Comparisons between ml-HAF (of order 3), PHAF-based approach (of order 3) and the proposed method. (a) IFL versus window size. (b) IFL-��
versus SNR. (c) First component: IFL-�� versus � �� (d) Second component: IFL-�� versus � �� .

ratio [as illustrated in Fig. 9(d)]. Thus, the esti-
mation of the second component will be blurred by the resid-
uals of the first component. This effect does not exist in the
case of the proposed method, thanks to the fusion of short-
term cubic FMs which is based on the minimizing the time-fre-
quency-phase continuity criteria.

In conclusion, a general remark is that the both PHAF and
proposed method perform, in all simulation contexts, better
than the ml-HAF-based approach. Concerning the PHAF
technique and the proposed method, we remark that the
time-frequency-phase based approach provides, with respect of
short-time PHAF, more flexibility and accuracy in estimating
the complex IFLs with varying amplitudes. The “price” to pay
is the computational complexity which is higher than in the
case of PHAF (the computational time is, in average, four times
higher in the case of the proposed method). While the IFL
estimation results, in simple cases, provided by PHAF and by
the proposed method are similar, one idea will be to combine
the projection technique and the PHAF in order to achieve
good performances in complex situations (high nonlinear IFLs
with varying amplitudes) and to decrease the computational
complexity.

In the last part of this section, we illustrate the proposed
method for the signal defined in Fig. 3. At the first iteration of
the method (Fig. 8), the fusion of the local most matched cubic
FMs provides a time-frequency shape corresponding to the third
modal arrival [Fig. 12(a)]. The size of the window is of 270
samples and it has chosen from several experiences. Actually,
a smaller window introduces errors while the correlations be-

tween the signal and cubic frequency modulation become weak.
Alternatively, a large window would require a higher order for
polynomial modeling. Therefore, a window size around 270
samples provides, for this type of signal, the best tradeoff.

The extracted time-frequency structure corresponding
to the third mode allows us to define a time-frequency
filter [Fig. 12(a)] which extracts the corresponding signal
[Fig. 12(b)]. The spectrogram of residual signal is illustrated in
Fig. 12(c).

The extraction of the modes is done according to the diagram
presented in Fig. 8. The time-frequency-phase criteria provide
the time-frequency shape of the most energetic component of
the signal. Furthermore, this shape produces the time-frequency
filter which physically extracts the component. This is actu-
ally the novelty of the proposed methodology with respect of
Matching Pursuit-based approaches which performs the compo-
nent extraction via a subtraction. While this operation requires
the estimation of component’s magnitude (which is not always
an easy task), the method proposed in this paper performs com-
ponent’s extraction via a time-frequency filtering procedure. In
this way, the extraction is independent of component’s ampli-
tude.

In our example, Fig. 12 shows how the modal arrivals are
iteratively extracted. We remark that the time-frequency-phase
criteria provide an accurate estimation of time-frequency struc-
tures of the signal. The time-frequency filters designed from this
estimation [Fig. 12(a), (d), (g)] allow extracting accurately the
modal arrivals [Fig. 12(b), (e), (h) and (i)]. After second iter-
ation, one can observe that the filtering-based extraction high-
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Fig. 12. Extraction of the third-order mode from the signal defined in Fig. 3(a). (a) Time-frequency filter for third mode extraction. (b) Spectrogram of ex-
tracted third modal arrival. (c) Residual signal after first iteration. (d) Time-frequency filter for second mode extraction. (e) Spectrogram of extracted second
modal arrival. (f) Residual signal after second iteration. (g) Time-frequency filter for fourth mode extraction. (h) Spectrogram of extracted fourth modal arrival.
(i) Residual signal � 1st modal arrival.

lights less energetic components. It is a consequence of filtering
out the first two most energetic components. This property of the
proposed methodology proves its usefulness for signals com-
posed of several arrivals with large differences of magnitude.
This issue will be illustrated in Section V in the case of real
data.

V. RESULTS

In this section, we illustrate how the methodology proposed in
this paper performs in the case of real signals. The dataset con-
tains North Atlantic right whale vocalizations recorded in the
Bay of Fundy during 2000 and 2002 [23]. Recordings were per-
formed by four autonomous hydrophones moored on the bottom
and disposed as indicated in Fig. 13. The purpose of the ex-
periment was to estimate the transmitter position by analyzing
signals received by the hydrophones. The transmitted signal is
similar to a transient generated by an explosion. Due to the dis-
persion of the channel, the signals arrived at each hydrophone
are composed of several modal arrivals as shown in Fig. 14.

The approximative position of the source has been established
from visual observations. However, as it is shown in this section,

Fig. 13. Experimental configuration: hydrophones positions with respect to the
source ������ � 130 m�.

several locating methods have been used in order to get this
position which is actually the final goal of this application.

While the signal transmitted by sources (right whales) is at
very low frequencies (transient below 100 Hz) the source local-
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Fig. 14. Localization principle based on modes time-of-arrivals (TOA) estimation.

ization algorithm requires the extraction of modal arrivals from
the signals received by each of the sensors. The blind localiza-
tion method, introduced in [23], is based on the estimation of
relative delays between modal arrivals received by sensor net-
work. Let us consider two modes at two sensors—Fig. 14.

The relative time of arrival TOAs between two modes re-
ceived by the sensors are proportional to the distance between
source and each of these sensors. According to [23] the TOAs
of signals received by the sensors and are expressed as

(19)

where is the group delay of the transmitted signal. The
relative time of arrival between two modes is independent of
the as shown by

Sensor A

Sensor B

(20)

Furthermore, the ratio between the relative TOAs of the same
mode, computed for two sensors, is completely independent of
the propagation parameters (materialized by the group velocity

):

(21)

The estimation of the time-frequency structures of the modal
arrivals provides an estimation of this ratio, based on the times
of arrival obtained for each frequency :

(22)

The source localization can then be posed as the optimization
problem described by [14]

(23)

where is the multidimensional objective function defined as

(24)

where is the set of mode pairs, is the set of
sensors pairs. The estimations obtained between several modes
and several sensors pairs reduce the error in the estimation due
to the noise, arbitrary attenuations of modes, source position
ambiguities, etc. (see [23] for more details).

One recording of a whale vocalization received by the sensor
network illustrated in Fig. 13 is considered in the following ex-
ample. The spectrograms of signals received by the four sensors
are plotted in Fig. 15.

This figure illustrates a good fitting between the estimated
modes, provided by the methodology proposed in this paper and
the spectrograms. The time-frequency-phase continuity criteria
show their ability to correctly estimate the time-frequency struc-
tures located very close each other.

Fig. 16 illustrates the comparisons between the estimated
modes received by the sensor 1 and 4 and the modes obtained
by simulations using Kraken program in the bandwidth 27–65
Hz (according to the physical configuration defined in this
section).
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Fig. 15. Mode estimations (blue line) from signal received by sensors.

Fig. 16. Comparison of the extracted modal arrivals (dashed line) with the modes obtained from physical modelling (solid lines).

TABLE I
COMPARATIVE LOCALIZATION RESULTS

We can remark that the estimated modal arrivals are close to
the simulated ones proving also that the results provided by the
proposed method correspond to physical modes. The relative
small errors could be explained by the differences between sim-
ulation and the model assumed by our approach and real condi-
tions.

In order to prove the accuracy of our methodology, the estima-
tions of time-frequency structures of received signals (Fig. 15)
have been used for the localization, based on the algorithm de-
scribed above. While the dataset corresponds to real whale vo-
calizations the real position of the source is unknown. For this
reason, we compare the localization results provided by the pro-
posed method with the ones obtained by other methods [24],
[25]. This comparison is illustrated in Fig. 16 and the Table I
gives the estimated positions by the three methods considered.

As illustrated by Fig. 17, the three methods localize the source
in the same region of the considered area. Of course, there are
differences between these results (Table I), but the three esti-
mations are close with respect of the investigated area. How-
ever, without knowledge of the actual source position, it is dif-
ficult to state which the method is most accurate. In this con-
text, the main advantage of the method proposed by this paper
is the performance without any knowledge about acoustic prop-
erties of the channel. That is, we did not assume any propagation
models as often used by model matching-based techniques. The
time-frequency structures are extracted only taking advantage
of their coherence materialized by the continuity in time-fre-
quency domain. Nevertheless, this localization method assumes

Fig. 17. Comparison of localization results of the three methods.

that the physical properties (bathymetry, sound speed in sedi-
ment and water column) are the same between the sources and
hydrophones. The eventual variations of these parameters as
well the range variability will be considered in the further work.

VI. CONCLUSION AND PERSPECTIVES

In this paper, a methodology of time-frequency component
extraction has been proposed. Its main feature is the enhanced
performance for complex signals with weak assumptions about
their contents. Hence, using some time-frequency-phase local
continuity criteria, universal for a broad class of signals, allows
the estimation of the time-frequency structures of signal’s com-
ponents. Furthermore, these shapes are used to calibrate a time-
varying filter which iteratively extracts each component. The
proposed method could be seen as a new version of matching
pursuit algorithm where the best matched structure is found by
considering the component characterized by arbitrary but con-
tinuous time-frequency shapes. More precisely, it is known that
the matching pursuit algorithm performs, at each iteration, the
subtraction of the best fitted component from the signal. Such
an operation requires the estimation of the magnitude of the
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best fitted component, which is generally a complex task. Alter-
natively, the nonstationary filtering procedure provided by the
proposed method, avoids the need for component amplitude es-
timation. The extraction of signal’s component is provided by
filtering instead of subtraction.

This method has been applied to the dispersive underwater
environment. Since no physical assumption is required by the
proposed method, it could be generalized for any other disper-
sive system. The analyzed signal is composed of several modes
having different nonlinear time-frequency structures, usually lo-
cated below the resolution capability of existing methods. In this
context, looking for local time-frequency-phase continuity al-
lows connecting time-frequency local atoms in order to identify
the time-frequency shape of a given component. The energies of
modes being very different, the physical separation of compo-
nent is done by filtering each of them according to the time-fre-
quency shape previously estimated.

While characterized by high resolution capabilities (with re-
spect of spectrogram or wavelet based methods), the proposed
method could be interesting in short range transmitter–receiver
configurations which are characterized by very close time-fre-
quency structures. This could be combined with the method-
ology proposed in [26] allowing the tomographic inversion of
sediments in shallow water even for short ranges.

The results provided for synthetic and real data prove the ca-
pability of the proposed methodology to efficiently perform in
the context of multicomponent signals having nonlinear time-
frequency structures. We have also shown its application to the
right whale localization.

In the future, we will focus on developing new techniques for
taking advantage on time-frequency-phase continuity. The uses
of a local polynomial phase modeling or new filtering technique
are two areas of further work in this field. We also intend to
apply this technique for other real datasets. New applications
based on dispersive modal diversity will be also investigated
for blind localization or efficient communication scheme in low
frequency underwater environment.
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