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SHORT ABSTRACT
A major obstacle to underwater operations using cameras comes from the light absorption and
scattering by the marine environment, which limits the visibility distance up to a few meters
in coastal waters. Current preprocessing methods typically only concentrate on local contrast
equalization in order to deal with the nonuniform lighting caused by the back scattering. We
review these techniques, then go further and show that the additional use of adaptive smoothing
helps to address the remaining sources of noise and can significantly improve edge detection
in the images. Many results on real data are provided and discussed using a custom numerical
criterion.
Keywords: underwater vision, denoising, contrast equalization, adaptive smoothing.

1 INTRODUCTION
In the recent few years, the increasing interest in remotely operated vehicles and autonomous
underwater vehicles for submarine operations has called for the development of reliable sensors
to ensure mission success. Optical cameras seem to be a good choice, as they have a good
resolution and are readily available on the market. However, the main drawback to the use of
cameras comes from the relatively limited visibility that can be attained: about twenty meters
in clear water and less than a few meters in turbid, coastal waters such as in harbors [4].
The propagation process can be divided into three additive components. The exponential decay
of the light intensity with distance, called attenuation, leads to a hazy image background. Visi-
bility may indeed be augmented with artificial lighting. Unfortunately, a significant fraction of
the power will be reflected by the water towards the camera before actually reaching the objects.
This process, known as backscattering, causes undesirable differences of contrast in the image,
which mask the details of the scene. Finally, forward scattering,i.e. randomly deviated light
on its way to the camera, causes blurring of the image features. Macroscopic floating particles
(marine snow), can also be considered as unwanted signal. In orders of magnitude, backscatter-
ing and marine snow are the greatest degradation factors, forward scattering comes second and
attenuation follows closely.
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Deconvolution is theoretically possible as the received image can be expressed as the convo-
lution of an ideal image with the modulation transfer function of the water [6]. However many
model parameters are needed. First of all, the attenuation and diffusion coefficients that charac-
terize the water turbidity are only scarcely known in tables and can be extremely variable. Next,
the most crucial parameter to recover is the depth of a given object point in the scene, which is
necessary to correctly estimate the distance traveled by the light. Therefore, to the best of our
knowledge, deconvolution has only been used in rather controlled environments so far. Liuet
al. [5] expose the full deconvolution procedure on the image of a flat object taken in a water
tank, which allows for the estimation of the depth. Trucco and Olmos [12] tackle the problem
in real-life conditions but assume a top-down point of view, with small variations of the bottom
depth; moreover, they use a simplified model where only forward scattering is present. They
estimate the medium parameters by using an iterative method on a dedicated quality criterion.

When no specific assumption can be made on the point of view or the turbidity parameters, as
in our case, generic image enhancement methods are often employed in the underwater robotics
literature. These methods make total abstraction of the image formation process and are usu-
ally very simple and fast. They are typically used to correct the contrast disparities caused by
the attenuation and backscattering, but the remaining noise level remains high, thus impairing
edge detection. In this paper, we explore the use of adaptive smoothing techniques in order
to improve the edge detection. Furthermore, we present a simple criterion which allows for a
comparison of the enhancement methods and the edge detection robustness.

2 ALGORITHM DESCRIPTION
2.1 Contrast equalization
Many well-known techniques are known to help correcting the lighting disparities in underwater
images. As the contrast is non uniform, a global color histogram equalization of the image will
not suffice and local methods must be considered. Among all the methods they reviewed, Gar-
cia, Nicosevici and Cufi [2] constated the empirical best results of the illumination-reflectance
model on underwater images: ifI(i, j) is the original image, andILP(i, j) its low-pass version,
a scaled, contrast-equalized version ofI is Ieq(i, j) = I/ILP(i, j). The low-pass version of the
image is typically computed with a Gaussian filter having a large standard deviation.
After the scaling, pixel values ofIeq will present a distribution centered around one, with a
small dispersion (especially for poorly contrasted images) except for a few outliers. Therefore,
contrast equalization is followed by histogram clipping to reject these outliers:

Iclip(i, j) =


i1 if Ieq(i, j) < i1,
i2 if Ieq(i, j) > i2,
Ieq(i, j) else.

(1)

where[i1..i2] is the 90% percentile interval of the intensity distribution ofIeq. Then the dynamic
of the image may be expanded so that all available intensity levels[0..imax] are occupied:

Iexp(i, j) =
Iclip(i, j)− i1

i2 − i1
.imax (2)

This method is theoretically relevant because backscattering, which is responsible for most
of the contrast disparities, is indeed a slowly varying spatial function. Backscattering is the
predominant noise, hence it is sensible for it to be the first noise addressed in the algorithm.
However, contrast equalization also corrects the effect of the exponential light attenuation with
distance.
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2.2 Noises present in the images after equalization
The contrast equalization will generally raise the noise level in poorly contrasted areas of the
original image. Indeed, the local gain of the contrast equalization process is:

G(i, j) =
1

ILP(i, j)
.

imax

i2 − i1
(3)

The standard deviation of the noise at location(i, j) will also be multiplied byG(i, j); conse-
quently, the lower the intensity, the higher the noise level. GainG affects all types of noises
remaining in the image, as the additive Gaussian noise of the camera electronics, the quantifi-
cation noise, which can all be considered as Gaussian white noise. However, these noises are
often small in front of the noise produced by the water, of which we shall now give a brief
summary.
Apart from forward scattering, which has a blurring effect, macroscopic floating particles pro-
ducing images of the size of a pixel can be present as well: it may be, for instance, sand raised
by the motion of a diver, or small plankton particles. These particles are,per se, part of the
scene, but cause generally unwanted signal. We see them as an additive noise, of distribution
clearly not Gaussian yet still reasonably similar, because the particles will act as (secondary)
sources of attenuated and diffused light. It is important to stress the local nature of this noise,
and the problems it causes in edge detection, because it is likely to cause falsely detected edges.

2.3 Use of adaptive smoothing to increase edge detection robustness
Edge detectors such as the Canny-Deriche algorithm [1] use a linear filter of typical widthα
akin to the Gaussian filter to smooth the image in the orthogonal direction to the computed
derivative. This helps to reduce noise and increases the edge detectability. In the underwater
context, noise is generally important so largeα values are needed; doing so results in badly
localized and less precise object shapes. Indeed, the linear smoothing filter does not adapt itself
to the local noise intensity or the presence of edges, so the filtering level is overevaluated on
some parts of the image. This was our motivation for adding an adaptive image smoothing
stage between the contrast equalization and the edge detection. The principle behind adaptive
smoothing is that the image is filtered less where edges are present, hence preserving their good
visibility. We have experimented anisotropic filtering and complex wavelets as possible means
to reduce the influence of the aforementioned noises. Before providing the results, we shall
briefly describe how these methods are used.

2.4 Anisotropic filtering
Anisotropic filtering was introduced in a seminal article by Perona and Malik [8]. Basically, it
consists in solving iteratively a modified version of the heat diffusion equation on the image,
using a control functionc of the gradient:{

∂i
∂t

= λ.div
(
c(|−−→gradi|2)−−→gradi

)
i(t = 0, x, y) = i0(x, y)

(4)

Smoothing increases with timet and the diffusion coefficientλ. In order to account for the local
noise amplification caused by the contrast equalization, we write:

λ(i, j) = λ0.G(i, j) (5)

Control functionc tends to one to allow diffusion when the gradient is small (i.e. in uniform
areas of the image). When the gradient gets large (in the vicinity of edges),c tends towards zero.
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Various forms have been proposed forc. We use the function proposed by Sochen, Kimmel and
Mallardi [10], because it optimizes the tradeoff between a small diffusion in the direction of the
gradient, and a large tangential diffusion:

c(|−−→gradi|) =
1√

1 + |−−→gradi|2
(6)

2.5 Wavelet filtering
Time-frequency methods have also been widely used to denoise images, especially bi-orthogonal
or “symlet” wavelet decomposition. Known problems of these methods are the following:

1. they are not translation independent and thus may corrupt the phase of the signal, which
distorts edges;

2. an automatic thresholding method of the wavelets coefficients is not always available.

We followed Kovesi [3] who proposed to use complex-valued log-Gabor wavelets so as to have
an approximation of the amplitude and the phase of the signal at various scales. Then, only
the amplitude of the coefficients is shrunk by the estimated noise contribution at that scale,
so as to preserve the phase of the signal. Noise is assumed to be Gaussian and white, so the
distribution of the amplitude of the wavelets coefficients at each scale follows approximately
a Rayleigh distribution. Of the ideal image, only edges (about 5 % of the pixels) contribute
at the smallest scale and the majority of the coefficients correspond to noise; their mean and
variance can therefore be easily computed. Then, because the noise is supposed to be white,
its contribution at a given scale is proportional to the bandwidth of the wavelet corresponding
to that scale. However, unlike Kovesi’s original algorithm, we do not use a constant threshold
over space, but instead correct it by factorG(i, j) so that heavier filtering is done where the
initial image was dark. Note that the assumption of a Gaussian white noise is false in our case,
but the noise distribution observed in uniform zones of our images were close enough. The
principal advantage of Kovesi’s method is that no constants tuning is necessary after initial
setting. Note that other wavelet-based denoising schemes exist that behave well on edges, such
as the curvelets [11], which may be investigated in the future in our context.

3 EXPERIMENTS
3.1 Qualitative results
We performed our experiments on miscellaneous images with unknown turbidity characteris-
tics. These images present typical noise levels for underwater conditions.Fig. 1 offers a visual
comparison of the effect of the two stages of our preprocessing on the original image. Contrast
equalization enhances visibility, yet it may create halos around strongly contrasted objects of
size similar to the Gaussian kernel (visible on image c, around fishes). We found that a good
tradeoff between equalization and small halos could be found by allowing the standard devia-
tion of the kernel to be five to ten percent of the image diagonal length. Noise remaining after
contrast equalization is visibly reduced after adaptive smoothing. Kovesi’s method was used
to perform the smoothing, but anisotropic diffusion gives slightly better solutions, with sharper
edges, as seen infig. 2. However, anisotropic filtering has two drawbacks: a lengthy compu-
tation time and the fact that diffusion constants must be manually tuned. Kovesi’s method is
faster and automatic.Fig. 3 displays the edges as found by the Canny-Deriche detector for the

4



four previous images. In all cases, the thresholds and smoothing parameters of the Canny de-
tector are the same. More edges are detected after contrast equalization, but they include false
positives. Smoothing helps to cut down on edges corresponding to noise.

3.2 Quantitative results
Contrast is often suggested as a means to assess the gain in underwater image preprocessing
algorithms. Various contrast criteria have been proposed in the literature [7]. Global con-
trast criteria, the simplest of which is the variance of the image, is not usable because of the
nonuniform lighting in raw images. Local criteria are generally very complicated and not very
condensed, thus heavier to use.
To assess the quality of enhancement methods, we propose a new, synthetic criterion. We base
it on a very general result by Pratt [9]: for most well-contrasted and noise-free images, the
distribution of the gradient magnitude histogram is closely exponential, except for a small peak
at low gradients corresponding to homogeneous zones. When images have such a gradient
distribution, edges are generally easily discernible from noise by a simple thresholding of the
gradient. On the contrary, for an image heavily corrupted by noise, or badly contrasted, the gra-
dient magnitude distribution will be very different. For instance, if we consider the extreme case
of an image consisting in pure Gaussian white noise, the two components of the gradient will
be normally distributed (as differences of normally distributed random variables); and the mag-
nitude of the gradient will follow a Rayleigh distribution. On the other hand, a badly contrasted
image will have more low gradients than usual, so the distribution will not be exponential.
We notei the gradient magnitude andh(i) the gradient magnitude histogram (computed on
typically N = 128 bins and normalized by its sum), then we perform a linear regression on
ln h(x), as shown infig. 4:

ln h̄(i) = a− b.i (7)

In practice, not all the gradient magnitude range is used for the regression, because noise appears
in ln h(i) at high gradients. This noise results from sampling effects for low histogram counts.
In our experiments, the magnitude range went fromi = 1 to N ′ = 2/3N .
Our robustness criterion is linked to the variance of the linear regression, which measures the
closeness of the histogram with an exponential distribution. The closer the robustness is to one,
the better the enhancement:

R = exp

(
− 1

N ′ − 1

i=N ′∑
i=1

(
ln h(i)− ln h̄(i)

)2)
(8)

Robustness is indicated infig. 3 for the images presented in this paper. The values taken by the
criterion confirm our intuition concerning the image quality.R takes lower values for images
where the sea bottom is not visible or made of sand, as the uniform background perturbs the
gradient statistics; but generally speaking the robustness criterion is higher for smoothed images
than for just contrast-equalized images, which in turn have a higher robustness than raw images.

4 CONCLUSION
In this paper, we showed that the standard method consisting in simply equalizing the contrast
of the images is not sufficient enough in many cases to allow for a robust edge detection. To
correct this, we benchmarked two classes of adaptive smoothing methods: anisotropic filtering
and Kovesi’s phase preserving wavelet filtering. This helps to address the remaining noise
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sources in the image (the captor and the macroscopic floating particles). We showed that the
two methods give arguably similar visual results and both improve edge detection. However
Kovesi’s approach provides a self-thresholding mechanism, which allows for a fully automatic
denoising. We also proposed a simple, condensed numerical criterion to assess the quality of
the restoration procedure, which generally agrees with intuition.
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a)

b)

c)

d)

Fig. 1: Benefits of adaptive smoothing. Left: original image. Middle: after contrast normaliza-
tion and histogram clipping. Right: after Kovesi wavelet filtering.

Fig. 2: Close-up view of image c) for comparison between Kovesi’s wavelet filtering (left) and
anisotropic filtering (right).
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a)
R = 0.0142 R = 0.6063 R = 0.5353

b)
R = 0.3227 R = 0.4452 R = 0.5032

c)
R = 0.3218 R = 0.9327 R = 0.9813

d)
R = 0.5543 R = 0.7812 R = 0.8305

Fig. 3: Comparison of edge detectability robustness. More edges are detected after contrast
equalization; and fewer false positives are found after adaptive smoothing.
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Fig. 4: Gradient magnitude histogram for image d). Plain line: original image, dotted line:
after equalization, dashed line: after smoothing. Gradient was computed with the Canny-
Deriche filter,α = 0.5.
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