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Super-elastic Behavior of Shape Memory Alloys under Cyclic
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Abstract

This paper concerns the super-elastic behavior of Shape Memory Alloys (SMA) under cyclic loadings. Particular
attention is paid to ratchetting (i.e., evolution of residual strain with the number of cycles). First, a series of uni-
axial tensile tests on Cu-Al-Be wires has been presented. In a second part, a macroscopic model is proposed and
identified from experimental results.
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1. Introduction

In many engineering applications, structures and
components of SMA are subjected to cyclic loads.
This can create a cumulative residual deformation
(i.e., ratchetting) [1,2].

Ratchetting is an aspect of the mechanical be-
havior of metalic alloys that has received consid-
erable attention over the last twenty years [3,4].
Among the great number of investigations, few
studies concern the super-elastic behavior of SMA.

The purpose of the present work is, on one hand,
to build an experimental database under uni-axial
cyclic tensile loading and, on the other hand, to
propose a macroscopic model taking into account
the main effects of cyclic loads on the behavior of
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SMA.

2. Experimental investigation under
uni-axial cyclic tensile loading

The material chosen for this study is a Cu-Al-
Be SMA (Cu: 87%, Al: 11%, Be: 2%, atomic per-
centages). The material is available as wire with a
1.4 mm diameter. Each wire was heat treated at
923 K during twenty minutes and then quenched
in boiling water during one hour.

An uni-axial loading-unloading tensile test has
been performed to characterize the specific behav-
ior of our material. The tests have been performed
with a Zwick electro-mechanical testing machine
operating in axial strain control. A 10-mm exten-
someter has been used to measure the axial strain.
All the tests have been performed at room temper-
ature.
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Figure 1 shows the stress-strain curve for twenty-
five loading-unloading cycles. It can be observed
that for our material:
– a residual strain, εr, appears after the first cy-

cle and grows with the number of cycles until a
reached limit (figure 2),

– the maximum stress, σmax, is not influenced by
the cyclic loading (figure 3),

– the slope at reload, Er, decreases slightly after
the first cycle (figure 4).

Fig. 1. Test stress-strain curves for loading-unloading cy-

cles.

Fig. 2. Evolution according to the number of cycles of the
residual strain εr.

Fig. 3. Evolution according to the number of cycles of the

maximum stress σmax.

Fig. 4. Evolution according to the number of cycles of the

slope at reload Er.

3. A cyclic super-elasticity model:
one-dimensional loading case

The proposed model is based on the super-
elasticity model recently proposed by Bouvet et
al. [5].The main originality concerns the descrip-
tion of the elastic domain of the material, at a
two-phased state (i.e., austenite and martensite),
by two different ”yield” surfaces for forward and
reverse transformation, respectively. In this work,
a modification is proposed to take into account
the effect due to cyclic loading.

The constitutive equations of the model are pre-
sented hereafter (the interested reader can find
more details in [5]):
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– Strain decomposition is:

εtr = ε− εe = ε− σ

E

– Relation between martensite volume fraction
and transformation strain is:

z =
εtr

γ

– ”Yield” function for forward transformation is:

f1 = σ −R(z)− σ0(T ) ≤ 0

– ”Yield” function for reverse transformation is:

f2 = −σ + R(z) + σ0(T )− δ ≤ 0

– ”Flow” rule for forward transformation is:

˙εtr = λ̇1
∂f1

∂σ
= λ̇1 = γż

– ”Flow” rule for reverse transformation is:

˙εtr = λ̇2
∂f2

∂σ
= −λ̇2 = γż

– Evolution of ”yield” surfaces size during forward
transformation is:

R(z) = Rmax
ln (1 + (n1 − 1)z)

lnn1

– Evolution of ”yield” surfaces size during reverse
transformation is:

R(z) = RC + f

(
z

zB

)
(RB −RC)

with f(z) = z
(
1 + n2 (1− z)2

)
,

RB = Rmaxf (zB) and RC = ∆Rm

(
1− e−bzc

)
– Cumulated martensite volume fraction is:

zc =
∫
|ż|dt

Where E, γ, σ0, δ, Rmax, n1, n2, ∆Rm and b are
material parameters.

4. A cyclic super-elasticity model:
multi-axial proportional loading case

The proposed model is based on the previous
model. The modification is to take into account the
multi-axial proportional effect (figure 5).

The constitutive equations of the model are pre-
sented hereafter:

Fig. 5. Yields functions describing the behavior of shape

memory alloy.

– Strain decomposition is:

¹
tr = ¹− ¹

e = ¹− E
−1

²

– Relation between martensite volume fraction
and transformation strain is:

z =
εtr

eq

γ

with εtr
eq = εtr g(−yε)

g(−1) , ε =
√

2
3¹

tr : ¹tr,

yε = 4det(εtr)

εtr
3

– ”Yield” function for forward transformation is:

f1 = ²eq −R(z)− σ0(T ) ≤ 0

with ²eq = σg(yσ), σ =
√

3
2² : ²,

g(y) = cos
(

cos−1(1−a(1−y))
3

)
,

yσ = 27
2

det(dev(σ))
σ3

– ”Yield” function for reverse transformation is:

f2 = −²eq + R(z) + σ0(T )− δ ≤ 0

– ”Flow” rule for forward transformation is:

˙¹tr = λ̇1
∂f1

∂²

– ”Flow” rule for reverse transformation is:

˙¹tr = λ̇2
∂f2

∂²

3



E γ σ0 δ Rmax n1 n2 ∆Rm b a

75 GPa 5.85 % 360 Mpa 10 MPa 250 MPa 81.2 0.2 3.4 GPa 0.3 0.7

Table 1
Material parameters for a Cu-Al-Be SMA at room temperature.

– Evolution of ”yield” surfaces size during forward
transformation is:

R(z) = Rmax
ln (1 + (n1 − 1)z)

lnn1

– Evolution of ”yield” surfaces size during reverse
transformation is:

R(z) = RC + f

(
z

zB

)
(RB −RC)

with f(z) = z
(
1 + n2 (1− z)2

)
,

RB = Rmaxf (zB) and RC = ∆Rm

(
1− e−bzc

)
– Cumulated martensite volume fraction is:

zc =
∫
|ż|dt

Where E, γ, σ0, δ, Rmax, n1, n2, ∆Rm, b and a are
material parameters.

5. Material parameters identification

The material parameters set has been identified
using the experimental results presented in the sec-
ond section. The parameters values obtained for
our Cu-Al-Be SMA are given in table 1.

Figure 6 shows the stress-strain evolution ob-
tained by the model. It can be noted that the model
takes into account accurately the main effect ob-
served for a super-elastic behavior under loading-
unloading cyclic test. Figures 2-4 show the com-
parison between experimental results and model-
ing concerning the residual strain, the maximum
stress and the slope at reload evolutions, respec-
tively. A good agreement can be observed.

6. Conclusion

In this work, a constitutive model has been
proposed to describe the super-elastic behav-
ior of a Cu-Al-Be SMA under cyclic loadings.

Fig. 6. Model stress-strain curves for loading-unloading

cycles.

In its general version (i.e., 3D formulation), the
model takes into account the super-elasticity, the
tension-compression asymmetry, the return point
memory effect, the martensite reorientation un-
der non-proportional multi-axial loading and the
ratcheting under cyclic loading.
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