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ABSTRACT

Time–frequency representations constitute the main tool for analysis
of non–stationary signals arising from environmental systems. Re-
cently, the interest for underwater dispersive channels appears since
dispersivity phenomena act at very low frequencies which are well
suited for long range underwater communication. In such a case,
a main interest is to perform estimation of the impulse response of
such channel for processing purposes. In this paper we introduce a
time–frequency analysis tool that aims to extract the time–frequency
components of the channel impulse response. This techniqueis
based on the adaptive time–frequency filtering whose parameters are
defined by a local chirp matching procedure. Tests provided for real-
istic scenarios illustrate the potential and the benefits ofthe proposed
approach.

Index Terms— Time–frequency analysis, System identification,
Dispersive channels.

1. INTRODUCTION

Considering the general non–stationary behavior of the observations
encountered in real applications, analysis in the field of time–frequency
domain constitutes the best suited technique to identify the relevant
structures for information processing [1]. In the context of under-
water acoustic, considering the dispersive behavior of channels has
fundamental interest, especially in the case of systems operating at
low frequencies. In [2] a theoretical description of signalissued from
underwater dispersive channels is described. It shows thatdispersiv-
ity phenomena introduce non–linear time–frequency deformations
of emitted signals. In addition, such deformations depend on the
propagation path, and leads to a multi–component heterogeneous
non–linear time–frequency behavior of the received signal. More-
over, coefficients loss and time–frequency proximity of paths bring
the signal model very complex. As shown in [1], [2], analysisof
dispersive underwater signals by typical time–frequency methods is
a challenging problem.

In this paper, a characterization framework that aims to deal with
signals issued from underwater dispersive environment is proposed.
The high–resolution requirement and the non–stationarityof all sig-
nals imply the construction of a new time–frequency analysis strat-
egy. A two steps solution is proposed. First step consists inroughly
modeling the instantaneous frequency of each component as aset of
local chirps. This model is established by finding the best matched
local chirp to the component. Unlike conventional approaches, the
first step exploits the initial phase of the local chirps, demonstrating
the importance of this parameter. Second step exploits thisestima-

tion to design the time–frequency filter for the extraction of the cor-
responding part of the signal. Finally, this procedure is performed
again for remaining components. The paper is structured as follows.
In section 2, the method is described in details. In section 3, after a
short presentation of the underwater dispersive channels,the poten-
tial of the proposed approach for some realistic data is proved. We
conclude in section 4.

2. METHOD

In a large number of applications (radar, sonar, underwateracoustic),
signals modeling is classically done by means of a multi–component
coherent time–frequency structures model. Such a model canbe ex-
pressed by :

x(t) =
MX

m=1

xm(t) + n(t), (1)

wheren(t) is the noise and where each component is expressed
asxm(t) = Am(t) cos(φm(t)). With this notations,Am(t) and
φm(t) are respectively the instantaneous amplitude and the instan-
taneous phase of themth component. In what follows, we assume
that eachAm(t) is slowly varying compared toφm(t). In addition,
we assume that the derivative ofφm(t) is a continuous function.

Let the signalx(t) be the received signal that has to be character-
ized. In this context, the problem is to find the set{Am(t), φm(t)}
such that

x̂(t) = argmin
{Am(t),φm(t)}

d (x(t), x̂(t)) , (2)

whered(x(t), x̂(t)) is a measure between the received signal and the
model.

In the case of unknown model, the shapesAm(t) andφm(t) are
unknown. Thus, due to the extreme variability of these parameters,
minimization of (2) is untractable, except for very simplescases.
To solve this problem we propose a general framework that aimto
estimate the set{Âm(t), φ̂m(t)} without prior knowledge on the
model.

2.1. General methodology

A broad class of characterization methods has been proposedfor
non–stationary mono–component signals (e.g. polynomial modeliza-
tion of phase [3], chirplets [4],...). However, it is well–known that
such approaches lead to very high difficulties in the case of ahet-
erogenous mixture of close time–frequency components.

To overcome this difficulties we consider, in this paper, thegen-
eral framework illustrated in Fig. 1. It is a recursive structure based
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Fig. 1. General principle of the proposed characterization frame-
work.

on two main steps: the time–frequency tracking step, and thetime–
frequency filtering step which are described next.

2.2. Time-frequency tracking

The goal of this step is to estimate, from the mixturex(t), the instan-
taneous frequency law of themth componentxm(t). The overall
tracking strategy is illustrated illustrated in Fig. 2.

2.2.1. mono–component case

Let us first consider the case when the received signal is a mono–
component signal such thatx(t) = xm(t). We assume thatxm(t)
can be approximated on each time segment∆t by a linear chirp
xm(t). Based on this assumption,xm(t) can be expressed on each
time segmentt ∈ [j∆t, (j + 1)∆t[ by xm,j(t) = cos(φm,j(t))
where

φm,j(t) = aj + bj t + cj t
2
. (3)

This local chirp model has been extensively considered in addition
with basis pursuit technics [4] to provide sparse representations of
signals. However, basis pursuit technics generally consider indepen-
dently each chirp which is not well–suited in our context : since the
instantaneous phase ofxm(t) is a continuous function, one can ex-
pect that the chirpxm,j(t) is “connected” with the chirpxm,j+1(t).

While the match filtering using reference signals (e.g. chirps)
is a traditional technique in radar or sonar [1], its interest in time-
frequency analysis has been materialized by a local match filtering
procedure [2]. In the remainder of this paper, we suggest to improve
the classical matched filtering approach by requiring continuity of
the initial phase between chirpsxm,j(t) andxm,j+1(t).

This can be interpreted as requiring following continuity con-
straints

1 Chirp sequence has continuous instantaneous frequency

bj+1 = bj + 2 (j∆t) (cj − cj+1). (4)

2 Chirp sequence has continuous instantaneous phase

aj+1 = aj + bj (j∆t) + cj (i∆t)2. (5)

Letxm,0(t) be the initial chirp that best approximate the compo-
nentxm(t) over the time interval[0, ∆t[. The next chirpxm,1(t) on
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Fig. 2. Illustration of the time–frequency grouping strategy. The
search of the next segment can be reformulated as a multi-hypothesis
coherent detection problem.

the time–interval[∆t, 2∆t[ is defined to be the one that best match
xm(t) with regards to the phase constraints (4) and (5).

We formulate this problem as a multi–hypothesis detection prob-
lem whereH1, . . . , HM are the chirp candidates. The problem of
finding the best candidate can be handled by testing all hypotheses
HM and choosing the one for which the match between the candi-
date and the true signal maximizes some criteria.

The problem of finding the best candidate when the match de-
pends on amplitude and phase of signals is generally refereed as a
coherent detection problem [6] and can be solved by a large variety
of techniques. In [7], authors suggest to use the so–called quadrature
matched filtering. This approach consists in comparing the signal
xm(t) with in phase and in quadrature waveforms such that

xc =

Z (j+1)∆i

j∆i

xm(t) cos φm,j(t) dt (6)

xs =

Z (j+1)∆i

j∆i

xm(t) sin φm,j(t) dt (7)

and to calculate the penalty criteriap(xm(t), xm,j)

p (xm, xm,i) =
nsx

2
c − 2 ncs xc xs + nc x2

s

2 nc ns − 2 n2
cs

, (8)

with nc =
R (j+1)∆i

j∆i

cos2 φm,j(t)dt, ns =
R (j+1)∆i

j∆i

sin2 φm,j(t)dt

andncs =
R (j+1)∆i

j∆i

cos φm,j(t) sin φm,j(t)dt. Thus, the penalty
criterionp(xm(t), xm,j) is maximized forxm(t) = xm,j gives op-
timal estimation ifn(t) is a white Gaussian noise.

2.2.2. multi–component case

In practice, the received signalx(t) is a multi–component signal. In
this case, the white Gaussian noise is clearly not satisfied because of
the multi–component nature ofx(t).

For this reason, we suggest to introduce a preprocessing step in
the quadrature matched filtering to isolate the specific time–frequency
band on which the chirp candidate is defined. Since the chirp candi-
date is a linear modulation of frequency, we suggest to use the class
of linear filters based on the Fractional Fourier transform described
in [8] to isolate the specific time–frequency band around theinstan-
taneous frequency of the chirp candidate. We define asx(ci)(t) the
signal that is obtained by filteringx(t) around the instantaneous fre-
quency ofxm,j . This signalx(ci)(t) is given by :

x
(ci)(t) = Ftan−1(ci)

��
F− tan−1(ci)x

�
(f).H(f)

�
(t), (9)



whereFα is the fractional Fourier transform of angleα, andH(f)
is the frequency response of a pass-band filter.

From the estimationxm,1, we repeat this procedure for all time
segmentsj∆t to obtain the sequence{xm,0(t), . . . , xm,J (t)}.

2.3. Time-frequency filtering

The goal of the time–frequency filtering step, is to extract from the
received signalx(t) the componentxm(t) that has be tracked in the
previous tracking step.

Let w(t) be a continuous strictly increasing function. We define
the local harmonic convolution operator [5] between the signal x(t)
and the filter functionh(t) by :

x(t)
w(t)
∗ h(t) =

Z
R

d w(τ )

dτ
x(τ ) h

�
w

−1(t) − w
−1(τ )

�
dτ. (10)

It can be noticed that in the special case wherew(t) = t, the classical
convolution operator is recovered. Based on this operator,the linear
time–invariant filtering theory is extended to a more general class of
linear filters that is valid for non–stationary signals.

The general principle of this class of filters is depicted in Fig. 3.
Its aim is to decompose the received signalx(t) into two signals
xL(t), xH(t) such that each signal is contained in a specific time–
frequency region delimited by a time–varying cutoff frequency f =
e(t).

It can be shown that such a decomposition can be obtained by
processing the signal by means of (10) if the following conditions
are fulfilled [5]

1. w(t) function matches the time–varying cutoff frequency such
that

w(t) = f0

�Z t

−∞

e(u) du

�−1

, f0 ∈ R
+ (11)

2. filter functionshL(t) andhH(t) are respectively lowpass and
highpass filters, with zero–phase and with a cutoff frequency
equals tof0.

Thus, from the chirp sequence{xm,0(t), . . . , xm,J (t)} we gen-
erate the estimated instantaneous frequencyIF (t) of the component
xm(t) by B–spline interpolation. Then, the the extraction of thekth

component is performed with two filters that have time–varying cut-
off frequencye(t) = IF (t) ± ∆f where2∆f is the band of the
time–varying passband filter.

3. NUMERICAL EXAMPLES

In this section, performances of the proposed characterization frame-
work is illustrated in the context of underwater dispersivechannel.
For this purpose, we first introduce the considered signal model and
then illustrate performances of the method on a realistic simulation.

3.1. Underwater dispersive channels

From a signal processing point of view, the underwater channel is
characterized by a non–linear time–frequency distortion of the emit-
ted signal which depends on two effects [9]:

• Attenuation due to the reflection to the bottom and see sur-
face;

• Non-linear group delay, having distinct characteristicsfor each
path, which produces a different delay for each spectral com-
ponent.
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Fig. 3. Time–frequency interpretation of the class of linear time–
varying filter based on non–unitary time–warping operators. Top:
Received signalx(t). Bottom–left: “lowpass” filtered signal.
Bottom–right: “highpass” filtered signal.

This last parameter gives the dispersive behavior of the channel and
is described through the modal propagation theory [9]. The impulse
responsex(t) of dispersive channels is expressed as a sum of modes
x(t) =

PN

n=1 hn(t) where the modexn(t) is given by :

xm(t) = F−1 (αm(f) exp (−jkr(f, m)r)) (12)

with F−1 the inverse Fourier transform,N the number of signifi-
cant propagation paths,αm(f) the attenuation ofmth path, r the
transmitter-receiver range andkr(m, f) a function associated to the
mth path. Close–form computation of (12) is a difficult task and
requires the knowledge of the physical parameters of the channel.
Still, a close–form expression of the group delay ofxm(t) is avail-
able in particular cases (constant sound speed profile), leading to the
following expression :

1

2π

∂kr(m, f)

∂f
= r

24 c2

2πf

s�
2π f

c

�2

−

�
k −

1

2

�2
π2

h2

35−1

(13)
wherec is the sound velocity, andh is the transmitter depth.

To illustrate performances of the proposed characterization frame-
work, we consider a numerical simulation of the impulse response
of an underwater dispersive channel. The simulated channelis 30m
deep and has a rigid bottom. The distance between the source and
the receiver is 1500m. Since the sound speed is approximatively
1500m.s−1 in water, reception instant is one second delayed from
emission instant. The simulated signal is sampled at 3kHZ, has
13000 samples, has been performed on the frequency band[20Hz−
−300Hz] and is corrupted by an additive white Gaussian noise with
a 10 dB signal–to–noise ratio. The theoretical representation and the
spectrogram of the simulated signal are displayed in the Fig. 4.

3.2. Results

The characterization procedure consists in the separationof each
modexm(t) from the signalx(t) by iterating the tracking–extraction
algorithm described in Sec. 2.

The first step, consists in generating a chirp sequence{x̂m,j(t)}
in order to estimate the instantaneous frequency ofxk(t). The sec-
ond step consists in designing a pass–band time–varying filter whose
time–varying cutoff frequency matches the chirp sequence{x̂m,j(t)}
and extracting the modêxm(t).
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Fig. 4. Realistic numerical simulation of the impulse response of
an underwater dispersive channel. Top: theoretical time–frequency
representation of the channel impulse response. Each line represent
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Fig. 5. Result of the time–frequency tracking step after 8 itera-
tions. This tracks are used for the design of the non–stationary time–
frequency filter.

Once the extraction of the modêxm(t) has been completed,
the extraction of the next modêxm+1(t) is performed by the same
tracking–extraction procedure on the residual signalx(t) − x̂m(t).

The result of the tracking step after 8 iterations is depicted in
Fig. 5. As can be seen, each track is clearly associated with one
time–frequency component as they approximately match their in-
stantaneous frequencies. Based on this family of tracks, itis straight-
forward to perform the extraction of the component by means of a
passband time–varying filter.

The smoothed pseudo–Wigner–Ville distribution of the three first
extracted components and the sum of the smoothed pseudo–Wigner–
Ville of the 8 extracted components are depicted in the Fig. 6. As can
be seen, all highest energetic modes have been successfullyextracted
by the proposed tracking–extraction procedure.

However, we noticed that the proposed tracking method has dif-
ficulties to deal with quasi–vertical structures. This is explained by
the fact that the discrete–time estimation of the integralsinvolved in
the calculation of (8) is difficult due to the rapid oscillations of the
cos andsin terms. This limitation can be overcome by estimating
integrals in time for allci < 1 and in the dual spectral domain for
all ci > 1. This issue is left for future work.

4. CONCLUSION

In this paper we proposed a new time-frequency method to extract
time-frequency components of the impulse response of a dispersive
channel. For this purpose, we introduced a new technique based on
two main features. The former is the local chirp matching using all
chirp parameters. While the provided instantaneous frequency esti-
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Fig. 6. Results of the tracking-extraction method.Top from left to
rigth : smoothed pseudo Wigner–Ville of respectively, the first, the
second and the third extracted modal arrivals. Bottom: sum of the 8
smoothed pseudo Wigner–Ville of each extracted modal arrivals.

mation is just an approximation it constitutes only an intermediary
result used to design the time-frequency filter. This latterfeature
serves to accurately extract the corresponding signal ensuring also
the conservation of both amplitude and time-frequency contents of
the given structure.

Results proved the potential of the method in a realistic context
from both time-frequency component proximity and amplitude. In
future works we will study improvement of the proposed tracking
tool by using cubic frequency modulation instead of the chirp model.
This way, the tracking will achieve a better matching ratio with non-
linear time-frequency structures. In another hand, tests for real data
will be conducted.
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