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Abstract— This paper introduces a new generalized complex
lag moment which produces ”time-phase derivatives” distribu-
tions. For the choice of the ”time-first phase derivative” which
stands for time-frequency representation, this distribution can
be seen as a form of the Wigner-Ville distribution. Moreover,
this generalization leads to distributions with highly reduced
inner interferences caused by the nonlinearity of the signal’s
phase. It can also be seen as a polynomial distribution since
the distribution of N

th order produces no inner interferences
for polynomial phase law of order N . Implementation problems
of this distribution are presented. The results are illustrated by
examples.

Index Terms— Time-frequency, phase non linearity, represen-
tation, analytic continuation.

I. INTRODUCTION

A
General form of complex lag distributions, that esti-

mates any order of instantaneous phase derivative, is

introduced. This class of distributions is based on the complex

lag argument. It will be referred to as a general form of the

complex time distributions. Beside the fact that these distribu-

tions provide estimation of any arbitrary order of instantaneous

phase derivative, a high concentration of the distribution along

the chosen phase derivative can be achieved. Note that the first

phase derivative is the instantaneous frequency. Thus, special

cases of this class of distributions are time frequency distri-

butions. They have been intensively investigated during last

fifteen years, [1], [2], since they play an important role in the

instantaneous frequency estimation. Distributions, introduced

by using the approach given here, are highly concentrated in

the time-frequency plane and they provide accurate instanta-

neous frequency estimation, even in the case of significant

instantaneous frequency variation within only a few signal

samples. Note that the physical meaning of the first derivative

of signal phase function is the instantaneous frequency itself.

Recently, in the paper [3], O’Shea analyzes the second order

phase derivative, i.e. the instantaneous frequency rate. The

estimation introduced in [3] can be obtained with a slight

modification of a particular form of the generalized complex

lag distribution. In addition, better instantaneous frequency

rate concentration can be achieved by using higher order time

frequency rate distributions belonging to the proposed class of

distributions. Distributions providing the third instantaneous

phase derivative are also introduced and analyzed.

The paper is organized through five sections. The concept

and theory of the proposed class of distributions are presented

in Section II. The theory is illustrated by various examples

in Section III. The problem of numerical implementation

is considered in Section IV. The most interesting specific

distributions, belonging to the proposed class of distributions,

are introduced and tested in Section V. Special attention is

devoted to the cases of the first, the second and the third phase

derivative. In the case of first phase derivative (frequency),

superiority of the proposed approach is proven by introducing

the sixth order distribution [4], that estimates the instantaneous

frequency, even when it could not be achieved by using other

time frequency tools.

II. INSTANTANEOUS PHASE DERIVATIVES

A. Concept

The ideal representation of an arbitrary instantaneous phase

derivative can be written in the form:

IPDK(t,Ω) = δ(Ω − Φ(K)(t))

where Ω is the axis which corresponds to the Kth derivative

of phase function Φ(t). The distribution which provides this

representation will be called, in general, the time-phase deriva-

tives distribution. Note that, for K = 1, the instantaneous

frequency representation is obtained as:

IPD1(t, ω) = δ(ω − Φ′(t)) (1)

where Ω ≡ ω and Φ′(t) is the first phase derivative, i.e.

instantaneous frequency. This representation can be achieved

by using well known time-frequency distributions.

For K = 2 instantaneous frequency rate follows:

IPD2(t,Ω) = δ(Ω − Φ(2)(t)) (2)

where Ω is the frequency rate axis. Instantaneous frequency

rate representation can be provided by using, recently defined,

time-frequency rate distributions.

Note that these two special cases have already been studied,

intensively for the first one, while the case K = 3 has not

been considered yet. A reason for this could be the elaborate

forms of distributions even for the first two cases. Namely,

ideal representations given by equations (1) and (2) can not

generally be achieved by using any time-frequency or time-

frequency rate distribution. Terms which cause spreading of

the distribution concentration, around the instantaneous phase

derivative, are inner interference terms. For K = 1, they

depend on
{
Φ(i)(t)

}
i
, for i ≥ 2. Note that for the spectrogram:

i = 2, 3, ..., while for the Wigner distribution: i = 3, 5, 7, ....



Distribution proposed in the next section provides not only

an arbitrary instantaneous phase derivative representation, but

also a very high distribution concentration.

Observe that the energetic distributions should provide

representation in the form:

IPDK(t,Ωk) = A2δ(ΩK − Φ(K)(t))

where A is the amplitude of the signal s(t) = AejΦ(t).

Thus, the signal energy is concentrated along the Kth phase

derivative. Most of the commonly used time-frequency and

time-frequency rate distributions satisfy this property.

The distribution which provides instantaneous Kth phase

derivative is introduced in the next subsection.

B. Introducing generalized complex lag time-phase derivatives

distribution

In the sequel we will show that, by using the complex-lag

argument concept, a set of powerful distributions in signal

analysis can be defined. In order to reduce inner interfer-

ences in time-frequency representation of highly nonstationary

signals, the complex lag argument was introduced in [5] .

Distributions with generalized complex lag moment (GCM),

that provide any instantaneous phase derivatives estimation,

are defined in this section, (8). The distributions as: the short

time Fourier transform, the Wigner-Ville distribution (WVD),

or O’Shea’s time-frequency rate estimator, are obtained as

special cases. However, it is important to emphasize that this

concept provides the new, highly concentrated, distributions

along the arbitrary phase derivative.

Let us consider a signal in the form (3).

s(t) = AejΦ(t) (3)

Assuming an analytic signal, (4), and using the Taylor’s

series expansion of the phase, we can write:

s(t + τ) = Aej
P

k
Φ(k)(t) τk

k! (4)

Phase integration in the complex plane allows the focusing

on a particular phase derivative, (5).

Φ(k)(t) =
k!

2πτk

∫ 2π

0

Φ(t + τejθ)e−jkθdθ (5)

Consider now the discrete form, which is used in numerical

implementations. Taking {ωN,k} as the N th roots of unity,

ωN,k = ej2πk/N , we can note their interesting property:

N−1∑

k=0

ωp
N,k =

{
N if p = 0 (mod N)

0 if not

Using this property, it is possible to get rid of some terms in

the expansion of Φ(t + τ). After relatively simple derivation,

we obtain:

N−1∑

k=0

Φ(t + ωN,kτ)ωN-K

N,k
= N

+∞∑

k=0

Φ(Nk+K)(t)
τNk+K

(Nk + K)!
(6)

N−1∑

k=0

Φ(t + ωN,kτ)ωN-K

N,k
= Φ(K)(t)

NτK

K!
+ Q(t, τ) (7)

Having in mind the unity roots, we can see that the

expression (7) contains only the derivatives of order Nk +K.

Thus, the first one is the Kth derivative of Φ(t). This is helpful

in defining a new generalized complex lag moment:

GCMK
N [s](t, τ) =

N−1∏

k=0

sωN−K

N,k

(
t + ωN,k

K

√
K!

N
τ

)
(8)

where lag axis τ is generalized and normalized. The Fourier

transform of the generalized complex lag moment produces

the generalized complex lag distribution, associated to this

moment:

GCDK
N [s](t, ω) = Fτ

[
GCMK

N [s](t, τ)
]

(9)

= δ(ω − Φ(K)(t)) ∗
ω

S(t, ω) (10)

Note that this distribution is concentrated along the Kth

derivative of the phase. The spreading factor S(t, ω) has the

form, (11):

S(t, ω) = AFτ

[
ejQ(t,τ)

]
(11)

The terms, related to the factor Q(t, τ), are results of the

higher order phase derivatives. This factor has the form:

Q(t, τ) = N

+∞∑

k=1

Φ(Nk+K)(t)
τ

Nk
K

+1

(Nk + K)!

(
K!

N

)Nk
K

+1

(12)

In the ideal case, it should be zero. Observe that the first

term appearing in the spreading factor is the phase derivative

of order K + N , the second one is of order K + 2N , etc.

Thus, the parameter N highly affects the factor Q(t, τ). It can

be concluded that a high value of N reduces interferences,

since Q(t, τ) is reduced and distribution concentration will be

less sensitive to the higher order phase derivatives. In order

to give a more comprehensive overview of this theoretical

framework, several specific distributions which can be useful

and illustrative examples are given in the next section.

III. SOME SPECIFIC DISTRIBUTIONS BELONGING

TO THE GENERALIZED COMPLEX LAG

DISTRIBUTION

A. Case K = 1 : Instantaneous frequency representation-Time

frequency distributions

Taking K = 1, we focus on the instantaneous frequency. In

this case, the moment, (8), will have the form :

GCM1
N [s](t, τ) =

N−1∏

k=0

sω∗

N,k

(
t +

ωN,k

N
τ
)

(13)

Depending on the parameter N , various forms of time-

frequency distributions can be obtained. Let us begin with the

first one, i.e. N = 1:

GCM1
1 [s](t, τ) = s(t + τ)

Q(t, τ) = Φ(2)(t)
τ2

2!
+ Φ(3)(t)

τ3

3!
+ . . .

2



Here, the associated distribution is the short time Fourier

transform (if a lag window is assumed). In the spreading

factor Q(t, τ), all phase derivatives of order 2 and higher are

implied. Thus, the short-time Fourier transform is well suited

only for sinusoids localization.

For N = 2 we have:

GCM1
2 [s](t, τ) = s(t +

τ

2
)s−1(t − τ

2
)

Q(t, τ) = Φ(3)(t)
τ3

3! 22
+ Φ(5)(t)

τ5

5! 24
+ . . .

This leads to a Wigner-Ville like distribution, with a

difference in the second exponent of the moment which is −1
instead of a conjugate. However, both have the same effect

on the phase. The first term appearing in Q(t, τ) is related

to the third derivative. Indeed, the Wigner-Ville distribution

can be used for ideal time frequency representation of linear

chirp signals.

Suppose now N = 4:

GCM1
4 [s](t, τ) = s(t+

τ

4
)s−1(t−τ

4
)sj(t−j

τ

4
)s−j(t+j

τ

4
)

Q(t, τ) = Φ(5)(t)
τ5

5! 44
+ Φ(9)(t)

τ9

9! 48
+ . . .

A distribution with the complex lag moment is obtained.

We observe that the same complex lag moment, as the one

in [5], is introduced. The complex time distribution (CTD) is

ideally concentrated for polynomial instantaneous frequency

laws of order 3 or less. However, it has been shown that it

is still highly efficient for polynomial phase of order greater

than 4, since the derivative coefficients in the spreading factor

decay rapidly. For even N , the value −1 is always a root

of the unity and the exponent with value −1 can be replaced

with a conjugate, since the effect on the phase function will be

the same. Hereafter, we will denote by G̃CMK
N the moment

GCMK
N modified by replacing exponents −1 with conjugates.

Thus, according to this notation the complex time distribution

defined in [5] is G̃CD1
4 . We can see that:

∫
GCD1

N [s]dω = 1

and
∫

G̃CD1
N [s]dω = |s(t)|2.

Of course, it is possible to choose a higher value for N . For

N = 6, highly concentrated, the sixth order time frequency

distribution is obtained:

{ω6,k}k=0..5 =
{

1; ej π
3 ; ej 2π

3 ;−1; ej −2π
3 ; ej −π

3

}

GCM1
6 [s](t, τ) =

5∏

k=0

sω∗

6,k

(
t +

ω6,k

6
τ
)

Q(t, τ) = Φ(7)(t)
τ7

7! 65
+ Φ(13)(t)

τ13

13! 612
+ . . .

The first derivative appearing in the factor Q(t, τ) is of order

7. It means that a polynomial phase of order 6 or less will not

produce any interferences in this distribution. For other signals,

the interferences will be highly reduced, as a consequence of

the very fast decreasing coefficients. Moreover, the position of

the sixth unity roots in the complex plane is an asset compared

with those of fourth order distribution, for example. Indeed, we

will stay closer to the real axis when computing the analytical

continuation. As a consequence, the estimation error will be

reduced and the computation will be less sensitive to noise.

In practical implementations, windowed forms of the

time-frequency distributions are used. For the short time

Fourier transform (or the spectrogram), the window size

has to provide a trade off between time and frequency

resolutions. For the pseudo Wigner-Ville distribution, the

choice is made assuming the signal is like a linear chirp in the

windows. Since this hypothesis is weaker than stationarity,

the length of the window can be increased in comparison to

the spectrogram. It is possible to further reduce a negative

influence of the window size. Namely, window size can

be increased, by using the generalized complex moment,

proportionally to the parameter N . In this way, the accuracy

could be, theoretically, highly improved. However, numerical

implementations introduce some limits for window size in

the complex lag moments based distributions. In the section

with illustrative examples, we will rather use equal window’s

size to show interferences reduction.

B. Case K = 2 : Time-frequency rate representation

The general form of the time-frequency rate distributions,

with complex lag argument is given by:

GCM2
N [s](t, τ) =

N−1∏

k=0

sωN−2
N,k

(
t + ωN,k

2

√
2

N
τ

)
(14)

For N = 2 in (14), follows:

GCM2
2 [s](t, τ) = s

(
t +

√
τ
)
s
(
t −

√
τ
)

(15)

The relation (15) should be compared to the IFR representa-

tion, (16), and estimator, (17), introduced by Peter O’Shea.

CPD(t,Ω) =

∫ +∞

0

s(t + τ)s(t − τ)ejΩτ2

dτ (16)

IFR(t) = argmax
Ω

[CPD(t,Ω)] (17)

The representation (16) does not have a perfect concentration

along IFR since it is never zero outside of the IFR path for

any signal. This problem can be fixed using the substitution

τ → √
τ , and the Fourier transform instead of the polynomial

Fourier transform. With these modifications, the distribution

GCD2
2 is obtained.

Taking N = 4, we will introduce the new, fourth order,

time-frequency rate distribution:

GCM2
4 [s](t, τ) = s

(
t +

√
τ

2

)
s

(
t −

√
τ

2

)
×

s−1

(
t + j

√
τ

2

)
s−1

(
t − j

√
τ

2

) (18)

3



G̃CM2
4 [s](t, τ) =s

(
t +

√
τ

2

)
s

(
t −

√
τ

2

)
×

s∗
(

t + j

√
τ

2

)
s∗

(
t − j

√
τ

2

) (19)

The sixth order time-frequency rate distribution will be

obtained by taking N = 6:

GCM2
6 [s](t, τ) =

5∏

k=0

sω4
6,k

(
t + ω6,k

2

√
τ

3

)
(20)

C. Case K = 3 : Instantaneous third phase derivative

representation

Note that, if we want to obtain distributions concentrated

around thirth phase derivative, the parameter N must be N ≥
K. Taking N = 3, we have:

{ω3,i} =
{

1, ej2π/3, e−j2π/3
}

GCM3
3 [s](t, τ) =

2∏

k=0

s
(
t + ω3,k

3
√

2τ
)

(21)

It is easy to conclude that for N = 4 a better distribution

concentration can be achieved. In this case we obtain the fourth

order distribution:

GCM3
4 [s](t, τ) =

3∏

k=0

sω4,k

(
t + ω4,k

3

√
3τ

2

)
(22)

Taking N = 6, the sixth order distribution is introduced:

GCM3
6 [s](t, τ) =

5∏

k=0

s(−1)k (
t + ω6,k

3
√

τ
)

(23)

IV. GCD IMPLEMENTATION

A. Analytical continuation

Computation of the signal’s value in the complex plane must

be done, based on the real signal samples. In mathematics, this

concept is known as analytical continuation, [6]. A function

s(t) is said to be analytical if it can be written as a power

series with a convergence disk of radius R 6= 0.

s(t) =

+∞∑

k=0

aktk (24)

Moreover, the series equals its Taylor counterpart and,

within its convergence radius, the function can be calculated

for complex values.

s(t + τ) =

+∞∑

k=0

s(k)(t)

k!
τk (25)

For an analytic signal, the continuation can be written using

the inverse Fourier transform.

s(t + jm) =

∫ +∞

+∞

S(f)e−2πmfej2πftdf (26)

In equation (26), S(f) is the Fourier transform of s(t). In

order that the integral (26) converges, the spectrum must be a

fast decreasing function. In practical applications, we can not

handle either continuous functions or infinite length signals.

Is it possible to compute the analytical continuation from a

restricted support of the real axis ?

a b t i m e

(a) Original signal

t i m e

(b) Restricted signal

Fig. 1. Support restriction

a b t i m e

(a) Signal repetition

a b t i m e

(b) Mirroring and repetition

Fig. 2. Discontinuities

If S(f) is the Fourier transform of a signal like Fig.1.b,

then its spectrum will have a C/f decay. Therefore, the ana-

lytical continuation can not be computed via inverse Fourier

transform. The problem is identical if the spectrum is obtained

through the Discrete Fourier Transform (DFT), equation (27).

s(n + jm) =

N
2∑

k=−
N
2 +1

S(k)e−2πmkej2πkn (27)

Indeed, the spectrum is sampled involving the repetition in

time of the original signal, Fig.2.a. More generally, there is a

strong link between continuity of a signal and its derivatives

and the decay of its Fourier transform. On the one hand, if

s ∈ Cp and if s(k) ∈ L1(R) for k ≤ p then we have (28).

|S(f)| ≤ ‖ s(p) ‖1

(2π|f |)p
(28)

On the other hand, if (28) is satisfied, then s ∈ Cp−2.

Continuity conditions must then be ensured at the bounds of

the pattern to obtain an overall continuous signal. One can

easily ensure continuity of order 0, by mirroring and repeating

the restricted signal. However, a necessary condition to have

a fast decreasing spectrum is the continuity of all signal’s

derivatives. This is not guaranteed with mirroring. We can

overcome this problem by applying a warping to the signal.

Let’s suppose we have, s ∈ C∞[−1, 1] and s(−1) 6= s(1). In

this case, we set a = −1 and b = 1. Let’s also consider a

warping function defined below, (29).

w : t → tw = sin(
π

2
t) (29)

4



The new defined function s̃(t) = s(w(t)) is now periodical

and C∞ over the whole real axis, Fig.3. Moreover, one

can expect its spectrum to be rapidly decreasing. However,

proceeding this way, there is a one more little step to map the

Complex Plane (CP) on which we want the signal’s values

and the warped complex plane. To compute s(t + jm), one

must compute s̃(t̃ + jm̃), which is s̃( 2
π asin(t + jm)), from

the spectrum of s̃ . The correspondence between the plane is

illustrated on Fig.4.

a b t i m e

(a) Warped signal

a b t i m e

(b) s̃(t) for t ∈ R

Fig. 3. Continuous extension
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(b) 2
π asin(t + jm)

Fig. 4. Complex time planes correspondance

As a result of using the Fourier transform for analytical

continuation calculation, we try to have the support of the

Fourier transform as compact and small as possible. The

ideal case for calculation would be a Dirac in the Fourier

domain. We do this for another important reason which is the

presence of noise. For complex time values, the spectrum is

multiplied with a very fast increasing exponential, equation

(27). Reducing the spectrum support also reduces the range

of this exponential and the amplification of the noise. Noise

sensibility problem is described in section IV-B

Thus, in order to have a better implementation, one can try

to optimize the analytical continuation calculation depending

on the kind of distribution to implement. One solution based

on the S-method is given in [7]. Using simple time-frequency

representations as starting point for calculation is a good deal,

because on the short term, the signal is usually simpler in its

Fourier domain.

Example with G̃CM2
4

By using the moment (19), a distribution concentrated along

instantaneous frequency rate will be obtained. To compute it,

one can try to obtain s(t + jm) over the needed complex

plane points. Another solution is described below. One can

first compute half part of the moment, (30). This part is a

function of real variables and has special properties.

M(t, τ) = s(t +

√
τ

2
)s(t −

√
τ

2
) (30)

Indeed, this part of the moment also provides a distribution

more or less concentrated along half the frequency rate (as

much as Wigner-Ville distribution is concentrated along instan-

taneous frequency). This means that for a given time instant

t, Fτ (M(t, τ)) is more compact than the Fourier transform of

s(t). Thus, it is numerically easier to compute M(t,−τ) than

s(t + jτ). The computation of M(t,−τ) is still an analytical

continuation calculation since we do not know M(t, τ) for

negative values of τ . We can conclude that it is better to

compute G̃CM2
4 by using equation (31). The computation of

(30) can be done using simple interpolation algorithms like

splines interpolation or even the Fourier method we used at

the beginning of this section for example.

G̃CM2
4 [s](t, τ) = M(t, τ)M(t,−τ)∗ (31)

This way, there is only one, instead of four, analytical

continuation to compute. It should be possible to find the same

kind of optimizations for the other distributions.

m

t

t

I
m

Re
0

t’

Fig. 5. Complex time plane

One must keep in mind that the terms in equation (27)

can be very large and cause numerical problems. The figure

5 depicts an example in the complex plane with one of

the sixth order unity roots, when we want to compute

s(t′ + jm) = s(t + ω6,1τ). Without interferences, the use of

large τ values should improve the accuracy of the resulting

representation. However, we also go farther in the complex

plane as m is increasing with τ . The maximum value of m is

limited in practice, mainly by noise but also by the sampling

frequency.

Instead of the DFT method, it would also be possible to

directly compute an approximation of the series (13) using

a polynomial modeling. However approximation of harmonic

functions with polynomials requires a high modeling order.

Those polynomials would not be easy to handle numerically.

However, one may try to use multiprecision algorithm to tackle

this problem.

B. Analytical continuation limiting factors

In presence of noise, the computation of the analytical

continuation can not be done as in (27). The noise will be

highly amplified for high frequencies. Thus a slight noise

in the high frequency parts of the spectrum will have more

effect than the powerful signal in the lowest frequencies. An

example is given on figure 6. In this case, m = 0.12, the

exponential takes high values for negative part of the spectrum.

5



At the beginning of the negative frequency part, the signal is

correctly multiplied with the exponential. Then, as the signal

has a fast decreasing spectrum, the multiplied spectrum tends

toward zero. However, we observe a divergence at the end of

the spectrum, which is due to the presence of noise. In this

particular case, it would be easy to separate both parts of the

spectrum, but when noise level is higher, it is not so obvious.

An efficient filtering becomes absolutely necessary. For some

cases, applying a fast decreasing windows on the spectrum

could be possible but it is very tricky, mainly for two reasons.

The first one is that modifying the spectrum of the signal will

result in instantaneous phase modifications. The second one is

that the characteristics of the window have to be adapted to

the signal and to the value of m.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2000

4000

6000

8000

10000

12000

Sp
ec

tru
m,

 m
 = 

0.1
2

frequency

Fig. 6. Spectrum divergence due to noise

The sampling frequency also has an influence on the calcu-

lation. Indeed, when the spectrum is multiplied with e−2πmk,

some parts of the spectrum are revealed depending on the value

of m. This effect is shown on figure 7. The top figure shows the

multiplied spectrum for m = 0 which is the original spectrum.

As m is increasing, the maximum is shifting towards the left

of the frequency axis. As long as the multiplied spectrum

vanishes before the end of the frequency axis, it is not a

problem. However, one can see on the bottom figure, for

m = 3, that one part of the multiplied spectrum is missing. In

this case, the analytical continuation will be miscalculated.

Once again, this phenomenon is not easy to predict as it

depends both on the signal and the value of m.
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Fig. 7. Multiplied spectra : S(k)e−2πmk

As a consequence, the maximum value of m is mainly

limited by the noise level but also by the sampling frequency.

The method proposed in [7] for implementation is efficient to

tackle the noise problem and to deal with some multicompo-

nent cases when the components do not cross each other. An

interesting approach for implementation of the complex time

distribution (CTD) is given in [8].

V. TESTS AND ILLUSTRATIONS

In this section we test the complex-time distribution by

using sixth roots of unity, GCD1
6 . Theoretically, this distri-

bution is more focused along instantaneous frequency and is

numerically easier to compute than the CTD, i.e. G̃CD2
4 .

We will compare it to the CTD and to the Wigner-Ville

distribution. We will also show an example of the same sixth

order distribution concentrated along the second and third

derivative of the phase. For the second order phase derivative,

we will compare our distribution with G̃CD2
2, introduced by

O’Shea, [3]. An example of instantaneous frequency rate esti-

mation, using MUSIC algorithm, is given. A light smoothing

is applied on each moment to improve slightly the readability

of representations.

A. Signals

Distributions, introduced in this paper, will be tested on the

three signals described below. The first one is a periodically

frequency modulated signal with rather rapid frequency varia-

tions. Noise is added in the second signal. The last one is still

a periodically modulated signal with more rapid frequency

variations.

s1(t) = ej(6cos(πt)+ 4
3 cos(3πt)+ 4

3 cos(5πt))

s2(t) = s1(t) + n(t)

s3(t) = ej(10cos(πt)+ 2
3 cos(3πt)+cos(9πt))

Note that, in the real case, these signals have the form of

a radar signal produced by nonuniform rotation of reflecting

point. The normalized distance changes caused by the nonuni-

form rotation is described by d(t) = 6cos(πt) + 4
3cos(3πt) +

4
3cos(5πt) in the first signal s1(t).

B. Instantaneous frequency representation

The various time-frequency representations of s1(t) are

depicted on figure 8. The WVD cannot follow the frequency

variation of the signal since it is highly non linear. The result

is better with the CTD because the interferences are highly

reduced. However they are still visible on the picture. Some of

the artifacts, around zero frequency, are due to miscalculation

of the analytical continuation. The sixth order GCD exhibits

a better signal representation. It is almost interferences-free

and has no artifacts in this case.

The signal s2(t) is the noisy one, consisting of s1(t) and

a white gaussian noise. The SNR is about 10dB. We present

the WVD, the CTD and the sixth order GCD in figure 9.

The last representation is still better since the sixth order

GCD is naturally more robust to noise than the CTD. We

observe a different shape for the WVD. It is a consequence of

6



Fig. 8. (a) WVD, (b) CTD, (c) 6th GCD.

Fig. 9. SNR=10dB (a) WVD, (b) CTD, (c) 6th GCD.

a special implementation which was applied for three methods.

The last signal, s3(t), has very rapid frequency variations.

It is used to show the limits of the CTD. The results are

depicted in figure 10. The sixth order GCD is still well

fitted to the theoretical instantaneous frequency and the

interferences level is negligible compared with the WVD and

the CTD.

Fig. 10. (a) WVD, (b) CTD, (c) 6th GCD.

C. Second and third phase derivatives

We now tackle the problem of higher order derivatives with

second and third derivatives, K = {2, 3}. With N = 2, it is

still possible to compute instantaneous frequency rate, since

we must have K ≤ N . To illustrate the concept, we applied

G̃CM2
2 , G̃CM2

4 and G̃CM2
6 on s1(t). The results are depicted

on figure 11. A more important smoothing is used here. On

the first part of figure, (a), the representation is more spread

around instantaneous frequency rate, since spreading factor Q
is higher for this distribution. The second part, (b), shows some

artefact on the representation due to the analytical continuation

approximations. The last part, (c), represents G̃CD2
6 . The

accuracy is here limited by the smoothing.

Note that the third phase derivative cannot be calculated

with N = 2. We have to use at least N = 3,with G̃CM3
3 . We

will compare it to the G̃CM3
4 and G̃CM6

6 . The distributions
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Fig. 11. K = 2, (a) 2nd GCD (O’shea), (b) 4th GCD, (c) 6th GCD.

are still applied on s1(t). The first shows better results

than the second one, although it should theoretically be the

opposite. With the smoothing, no difference can be noticed

on the interferences. However, the analytical continuation of

the second representation is more difficult to compute due to

the fourth unity roots location, implying some artifacts on the

representation. The last figure, with sixth order representation,

shows better results.
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Fig. 12. K = 3, (a) 3rd GCD, (b) 4th GCD, (c) 6th GCD.

D. Example of instantaneous frequency rate estimation

Estimating the instantaneous frequency rate of a signal

could be useful if this parameter has a physical meaning

for the signal. Some methods use directly the representation

to extract the parameter. With the moments introduced in

this paper, we can obtain a correct concentration along the

instantaneous phase derivative. In other words, for any time

value, the τ variable dependent signal G̃CMK
N [s](t, τ) is

almost monochromatic. As a consequence, it is possible to

use a parametric method like MUSIC algorithm to estimate its

frequency (having in mind that this frequency is related to the

physical parameter we are looking for). We applied MUSIC

algorithm on the three moments dedicated to frequency rate

estimation. These moments were applied to s1(t). The results

are depicted on figure 13. A signal without noise is used to

show the accuracy of estimation for a highly non linear phase.

On the picture the estimation related to sixth order moment is

identical to the theoretical law. For the second order moment,

results are not as good. This was expected, since on figure 11.a,

the representation is not correctly focused on the frequency

rate.

VI. CONCLUSION

A class of generalized complex lag distributions is proposed

in this paper. These distributions are parameterized by two

integers K and N . One important property is that they

provide the concentration along the Kth derivative of the
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Fig. 13. Instantaneous frequency rate estimation.

phase. In addition, it easy to generate distributions that are

highly concentrated along the Kth derivative of the phase. A

special case of this class of distributions, for K = 1, gives

well known distributions for time frequency analysis. Among

them, the Wigner-Ville distribution is one of the special

cases. The most interesting distributions for K = 2 (time

frequency rate analysis) and for K = 3 are analyzed. Theory

is illustrated and justified by numerical examples.
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