Skip to Main content Skip to Navigation
Journal articles

A three-pronged approach to predict the effect of plastic orthotropy on the formability of thin sheets subjected to dynamic biaxial stretching

Abstract : In this paper, we have investigated the effect of material orthotropy on the formability of metallic sheets subjected to dynamic biaxial stretching. For that purpose, we have devised an original three-pronged methodology which includes a linear stability analysis, a nonlinear two-zone model and finite element calculations. We have studied 5 different materials whose mechanical behavior is described with an elastic isotropic, plastic anisotropic constitutive model with yielding based on Hill (1948) criterion. The linear stability analysis and the nonlinear two-zone model are extensions of the formulations developed by Zaera et al. (2015) and Jacques (2020), respectively, to consider Hill (1948) plasticity. The finite element calculations are performed with ABAQUS/Explicit (2016) using the unit-cell model developed by Rodríguez-Martínez et al. (2017), which includes a sinusoidal spatial imperfection to favor necking localization. The predictions of the stability analysis and the two-zone model are systematically compared against the finite element results – which are considered as the reference approach to validate the theoretical models – for loading paths ranging from plane strain stretching to equibiaxial stretching, and for different strain rates ranging from 100s−1 to 50000s−1. The stability analysis and the two-zone model yield the same overall trends obtained with the finite element simulations for the 5 materials investigated, and for most of the strain rates and loading paths the agreement for the necking strains is also quantitative. Notably, the differences between the finite element results and the two-zone model rarely go beyond 5%. Altogether, the results presented in this work provide new insights into the mechanisms which control dynamic formability of anisotropic metallic sheets.
Complete list of metadatas

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-02995696
Contributor : Marie Briec <>
Submitted on : Tuesday, February 2, 2021 - 4:28:19 PM
Last modification on : Tuesday, February 2, 2021 - 4:35:47 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2021-04-15

Please log in to resquest access to the document

Identifiers

Citation

K.E. N’souglo, Nicolas Jacques, J.A. Rodríguez-Martínez. A three-pronged approach to predict the effect of plastic orthotropy on the formability of thin sheets subjected to dynamic biaxial stretching. Journal of the Mechanics and Physics of Solids, Elsevier, 2021, 146, pp.104189. ⟨10.1016/j.jmps.2020.104189⟩. ⟨hal-02995696⟩

Share

Metrics

Record views

76