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Obstacle avoidance capability for an Autonomouséddwdter Vehicle (AUV) is of high interest for theeRch
defence and especially GESMA centre which is inedlin the development of decisional autonomy fonAU
for several years. In addition to its original ngs the vehicle must ensure its own survival angintherefore
understand the environment in safety. The usekdravard Looking Sonar (FLS) on AUV is one of thesno
efficient solutions to detect unexpected and pa#ptdangerous changes of the environment, likegresence
of obstacles or seabed slope. Like this, a FLS mr@awent the vehicle from obstacles or terrain timaty
endanger the underwater vehicle. A process modebban derived based on navigation data in ordereict
the motion of a ground target which has been dedeirt the sonar image. This model has been uséuein
prediction step of a Kalman filter that enableB &rgets tracking through successive frames. ditiele gives
an overview of the overall architecture with a fecon Kalman filtering. An assessment will be dome o
synthetic and real data recorded in April 2006 miysea trials organized by GESMA.

1 Introduction

Autonomous Underwater Vehicles (AUVs) have to fllfi
their mission safely. In this article, a Forwardokmng
Sonar is used by an AUV to ensure its survival.dboit,
sector scan sonar images are processed in ordtadsify
any obstacle that can endanger the vehicle andttestte
interruption of the mission. To have enough time
characterize and finally avoid an obstacle, thitetahas to
be detected and tracked through the images sequence

Some works published on the tracking of objectsomar

to

images use optical flow on moving objects and data

association techniques [1, 2]. Other works usé aibjects
tracking to estimate the AUV motion with respecttie
seabed [3].

In contrast our tracking algorithm takes into aawou
navigation data to robustly track detected groupskacles
even if the vehicle changes its speed and/or titude.
Indeed a Kalman filter which takes navigation deganput
has been derived from the AUV process model. The
Kalman filtering of successive detections gives aod)
estimation of the trajectory of the obstacle inhsigrhe
process model has been presented last year andoavill
briefly reminded in the third part [4]. Detectionopess is
presented in the following part and the Kalmanrefilig
will be detailed in the fourth part. After some wasron
data association for multi-target tracking in tlifghfpart,
the last part is dedicated to assessment on reSIORE
8101 data recorded in April 2006 during sea trials
organized by GESMA.

2 Detection step

Sonar images are corrupted by a well-known muttiiive
noise that is speckle noise [5]. By considering nme

modulus of the reflected wave, pixels level follows
Rayleigh law. Under this hypothesis, we have derige
simple adjustment test that only consists in vargythe
relation of proportionality that exists between thean and
the standard deviation of pixels. In practice, vigda the
sonar image into snippets and test for each of thmm
value of the ratio between the standard deviatanesand
mean value of pixels levels. If this ratio is t@ from the
expected value (about 0.52) we consider that atasgin
sight. By thresholding the image, we can see anduse
pixels level does not follow a Rayleigh distributioThe
centre of inertia of each area is set as a detqméd or
measurement and can initiate a Kalman filter.

3 Process modd [4]

The state equation is based on the process model th
provides the sonar coordinatgs, §) of a detected object
given the AUV motion. This model is obtained in sl
steps.

In the mobile reference frame the target is locabgd
means of the following equations:

(mef +my J + (e = o2
m’ =sind.d
-siné.m +cosf sing.m’ +cosf.cosg.m’ =h

(1)

Where m, = (mf,my,mf) stands for the coordinates of an

object laying on the seaflooh is the AUV altitude and
(¢,9,zp) stand for the Euler angles.

From this system, we can derive the functipsuch that:

X

m
= (9] @
-
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Z



Acoustics 2010 Istanbul Conference

andf, such that{d,8) = f, (', i, ri¢,d, 3) (3)
Besides we have the following vehicle model :

P, =M, = =Ry (8. 6.0)Im, (4)

where p, = (p;‘, p), pg) stands for the coordinates of the

AUV (we supposed its location merged with all thbeo
sensors) andm, = (r‘rﬁmgr‘rﬁ) stands for the coordinate:s

of the object in the absolute reference frame.

By derivating the last equation, we get:

y '
my = _R;ru\erReuler I:Emry _Vr = fb (mx ’ my ’ erer '¢’g!w!¢! .9,1,0)
My m

wherev, = (vrx,vry,vf) stands for the speed of the AUV.

We can now give the expression of a moving objact i
function of its initial position and navigation dat

(d,8)= f.of,0f,(d,0.v, . 4.6.0.0,6,0) 6)

4  Kalman filtering

4.1 Stateequation

The state vector is composed of the sonar cooebnae.
X= (d J)T . Considering the previous paragraph and
Eq.(6), we can then write the state equation indikerete
domain:

k-1 = f(Xk—1/ k—1’uk—l)+vk—l (@)
where the vector inpug, , is derived from navigation data

: T

such thatu, , = (vr o 0 ¢y ¢ 6 z//)k_l, v, stands

for the white Gaussian state noise whose covariaratex
is Q_, (detailed fartherpnd f = f_of,of, is a non linear

state function determined at paragr&ph

4.2 Measurement equation

Our measurement consists of obstacle coordinatethen
screen. The measurement equation is then:

Yirk-r = HiXpies ¥ Wiy (8)
where w,_, stands for the white Gaussian measurement
noise whose covariance matrixg_, (detailed farther),

1

[Hk]=[H]= Aod , Ok, is the measurement matrix,

)

with Ad (resp.A4d) stands for the along trackeép.across
track) sampling rate.
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4.3 Implementation

4.3.1 Covariance matrices
State and measurement noises as well as inititd st@
Gaussian and mutually independent.

By taking into account theoretical precisions ofigation
sensors, we can estimate the following state veeisin

048 O Ok
0 0024
To compute measurement variances at the initigh ste

(k=0), we consider a measurement precision aboudeal
pixels along track and half a pixel across traatoading to

100 O

0 0.52]
For the other steps (k>0), measurement precisipers
on the innovation, i.e. the difference between the
measurementy, and its predictiony, ,,_, converted into
pixels.

Q. =Q :10_6[

sonar resolution. In other WOI’de :[

4.3.2 Initialisation

The initial state X,,, consists of the coordinates of the
centre of inertia of the detected obstacle. In otherds

Xor0 = Xoro = (do Jo)T .

From uncertainties about 5 meters in range andgseds
in azimuth, we can derive the initial covariancetn®a

4.3.3 Prediction stage

For this stage we have to compute the new sfate,
given the previous on&, ;-

Prediction step is carried out by performing ancensed
transform ofXx,_,,,_, because of the strong non linearity of

the state functiof[6] as follows:
1. Creation of Sigma points)(,i(_l,k_l, for i=1 to

2n+1 with respective weight\/: points that are
uniformly distributed on an ellipsoid such that
their mean and covariance ar# _,,_, and

Byka (n=length ofg ) [7].

2. Computation of X, = f Ii<—1/k—1’uk—1) for
i=1 to 2n+1
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2n
3. Predicted state is theX,,,, = Z:V\/i)(l'</k_l and
i=0
the associate covariance matrix

Boka = gvvl [Xlidk—l - )A(k/k—l][)(li/k—l - )A(k/k—l]T :

4.3.4 Correction stage

For this stage we have to estimate the actual memsunt
yk/k—l given the actual stat,, , and we can do the

correction by applying Kalman equations in the dinease
this once:

Xk = Kn ¥ Kk(yk jlyklk—l) N
Ky = Pklk—lHII(HkPk/k—lHl-(r + Rk) = Pklk—lHI;r(RtL(}) ©)

Bok =Roka Kthij(Kk)T

where y, is the real measurement (detection). If no
detection occurs at this step, we take the prewiletisction
but the corresponding covariance matrix becomes

5
R =R, = 10 0 in order not to take into account
* 10 10°

this detection.
We can notice here the impact of the innovationmter
Ue = Y = Yurka-

5 Dataassociation

Data association techniques can be divided intotite
following categories [8]:

» Approaches that focus primarily on target
selecting measurements that only fall within
« validation gates » generated by existing tracks,

» Approaches that focus on measurements finding
an existing track or creating a new one if
necessary.

The second one is more suitable for our conteet, for
trackable target with sufficient geographic infotioa to

be well localized. Practically for each measuremenmst
search the closest track by considering the Euatide
distance in meters. Two cases can occur: if thitadtce is
two big (>15m) a new Kalman filter is initialized,
otherwise this measurement (or average measureihent
more than one measurement is found) is taken dowant

in the correction step of the Kalman filtering.

Another point concerns tracking interruption. Coexpl
tests like the sequential probability ratio testVgald or
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chose a simpler test that is to say that if no measent is
associated to a given track three times one dfierother
this track is interrupted.

6 Experimental results

6.1 Datadescription

6.1.1 Avoidance sonar data

The Redermoris an experimental platform deployed fram
the French Navy shiBEGM Thetis In its last release,
avoidance means of Redermor consist of a networkOof
Tritech echosounders and Reson Seaba®101 Forward
Looking Sonar (FLS). In this article sonar data edfitom

the Reson Seaba8101 FLS operating in a sector scan
mode. The system can play a beamformed image over a
15° (vertical) x 60° (horizontal) sector with an azimu:h
resolutionAd equal to 1.5° and a range resolutftch equal

to 5cm. The sonar has been oriented 15° from the
horizontal plane.

In order to test the capability of tiRedermorvehicle to
react when obstacles are encountered on its wagMZE
organized an experimental trial in April 2006, nare
DEVITOBS'06 “DETection et EVITement d'OBStacles”.

6.1.2 Navigation data

Navigation is performed knowing data from a Doppler
Velocity Log (DVL) and a Motion Reference Unit (MRU
The DVL gives the vehicle speed in relation to the
seafloor. The MRU gives the vehicle orientation aryd
acceleration in relation to the earth (or absoluté¢rence
frame (X: geographical North, Y: East, Z: gravt
direction).

6.2 Resultson synthetic sonar data

Synthetic data consist of two punctual ground dijec
embedded in the background image ofeamptyreal sonar
sequence. Doing this it was possible to quantifg th
tracking performance for different levels of noisa
measurements. We observed that filtering works whlle

a white Gaussian noise with a standard deviaties fkan
2m was applied.

An example of filtering with noisy measurementastard
deviations of 20 pixels in range and 1 pixel innazih) is

statistical tests of Mehra and Peschon seemed to begiven hereafter.

interesting because these tests are based onrntheation
values [9, 10]. Unfortunately these tests wereidiff to
use here because of hazardous implementation anuiytu
for the first one and because of lack of statistszamples
(innovation values) for the others. For these reasave

Fig. 1 is a snapshot of the tracking of the two edued
targets and Fig. 2 gives trajectories and variaficesne
of them.
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Figure 1: Snapshot of multiple Kalman filtering
(measurements in red — tracks in green or yelloth thieir

corresponding ellipses of uncertainty)
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6.3 Resultson real sonar data

We show here results on a sequence where a shilpliesc
on the seafloor (a large echoes area followed bgrge
shadow area).

ping no 93

Figure 3: Snapshot of Kalman filtering on a shipekre
(measurements in red, tracks in green and cyan)
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Figure 2: Target 1
Up: filtering (green: reference trajectory, red:
measurements, blue: estimated trajectory)
Down: variances evolution along the sequence
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Figure 4: Shipwreck sequence
Up: filtering (green: reference trajectory, red:
measurements, blue: estimated trajectory)
Down: variances evolution along the sequence
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7 Conclusion

In this paper a multiple-target tracking has besssgnted
for sector-scan sonar images. This algorithm isgesl
for still target lying on a flat seafloor and it wld fail if
one of these hypotheses is strongly violated. based on

a Kalman filter that takes navigation data as inpte
state equation is based on the process model ofethiele
which is non-linear. That is why an Unscented Kaima
Filter has been implemented. Results on syntheiitraal
Reson Seab&101FLS sonar data have been showed. This
study is of high interest for GESMA involved in the
development of experimental AUVs such as the Rederm
for several years [11]. These results will alsoulseful in
the context of the covert REA (Rapid Environmental
Assessment) AUV named “Daurade” [12]. The objective
of this project is to describe the seabed and tlagew
column by means of an AUV. This project is realized
collaboration with the SHOM, the French Navy
Hydrographic and Oceanographic Service. As this ABIV
equipped with a Blueview 450 FLS, the multiple-&trg
tracking algorithm will be soon tested on it.
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